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Abstract. We present a case adaptation method that employs ideas from the field of
genetic algorithms. Two types of adaptations, case combination and case mutation, are
used to evolve variations on the contents of retrieved cases until a satisfactory solution is
found for a new specified problem. A solution is satisfactory if it matches the specified
requirements and does not violate any constraints imposed by the domain of
applicability. We have implemented our ideas in a computational system called
GENCAD, applied to the layout design of residences such that they conform to the
principles of feng shui, the Chinese art of placement. This implementation allows us to
evaluate the use of GA’s for case adaptation in CBR. Experimental results show the role
of representation and constraints.

1 Introduction

Many different methods have been proposed for performing the task of case adaptation in
CBR. They have been surveyed in several publications, including [1], [2], and [3]. Different
approaches may be better for different domains, different knowledge representation schemes,
different reasoning tasks, or other reasons. Approaches may differ on the types of adaptation
they support, the amount of change in a case they permit an adaptation to make, the number of
cases they can rely on to generate solutions to new problems, and other factors. The
adaptation method we present here is flexible, in that it allows for a wide variety of options
along all of these dimensions. In our approach, several types of adaptation are available, cases
may end up being completely transformed or just slightly tweaked, and final solutions may
contain features from one or many cases.

In this paper we present a case adaptation method based on genetic algorithms. In this
method, cases are adapted incrementally and in parallel, until a satisfactory solution is found
for a given problem. We have employed this approach for design, though it can be used for



other reasoning tasks. Within design, we have tried it out on several domains, though in this
paper we focus on just one, introduced below. The main concern of this paper is to describe
our process model for case adaptation, not to discuss the quality of the designs produced by
the application.

Our case adaptation method supports two broad types of adaptation: parametric and
structural. Parametric adaptation of cases is achieved through mutation. Structural adaptation
of cases is achieved through crossover. Depending on the specifics of a given domain and the
richness of the representation chosen for it, several mutation and crossover operators, with
different nuances in the effects they produce, can potentially be made available.

The method assumes that the requirements of a new problem will partially match, and
therefore result in retrieving, more than one case in memory. These retrieved cases are used to
seed an evolutionary process, i.e., they form its initial population. The adaptations produced
by the crossover and mutation operators of the evolutionary process are evaluated, and the
best ones selected to participate in the next round of genetic adaptations, until a satisfactory
solution is found. Evaluation requires domain knowledge in order to recognise whether
proposed solutions are acceptable for a given domain or not; crossover, mutation, and
selection can operate independently of the domain.

Depending on which randomly evolved variations on the originally retrieved cases are
selected to remain in the population after being evaluated, final solutions may have evolved
from just one of the cases, or from all of them. They may differ greatly in structure and/or in
parameter values from all of the originally retrieved cases, or may be similar to one or several
of them. Thus, the method is useful in a wide variety of problem situations and domains
requiring different types and degrees of adaptation.

In the following sections we discuss our evolutionary case adaptation method in more
detail, we present an implementation for a specific domain and the knowledge representations
we have adopted for this domain, and we give some experimental results.

2 Case Adaptation Method

We have developed a process model of design that combines the precedent-centered reasoning
capabilities of case-based reasoning (CBR) (see for example [1]) with the incremental
evolution of multiple potential solutions, an idea taken from the paradigm of genetic
algorithms (GA’s) (see for example [4]). The process model involves the use of CBR as the
overall reasoning strategy and the use of a GA to perform the case adaptation subtask.
Because a general-purpose, knowledge-independent GA is used, case adaptation is
knowledge-lean. It is only in the evaluation module of the GA that domain knowledge is
required so that proper decisions are made about which potential solutions generated by the
GA are useful to keep in future GA cycles.

Our process model is shown in Fig. 1. In this model we assume the existence of a case
memory in which descriptions of previously existing solutions are stored. Each case is
represented as a set of attribute-value pairs. The cases that are retrieved from memory given a
new problem specification are adapted by repeatedly combining and modifying their
descriptive features. After each cycle of combination and modification, solutions are
evaluated and the best are selected, to be adapted in the next cycle. Through this incremental,
evolutionary process, the case adaptation method converges to a satisfactory solution to the
new problem. The solution will contain features and/or modifications of features from several
of the cases that were initially retrieved from memory. Thus, our process model adapts past



solutions by evolving different combinations of their features in parallel and continuously,
until a satisfactory combination is found.
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Fig. 1. Evolutionary case adaptation method.

The main emphasis of our process model is on proposing new solutions based on the
knowledge contained in previously known solutions, i.e., it is a precedent-based approach.
But a major component is the evolutionary approach to adapting the known solutions in order
to generate solutions to new problems. The two strategies of CBR and GA’s complement
each other. The cases retrieved from memory serve as the initial population for a genetic
algorithm, while the genetic algorithm adapts the cases until it finds an acceptable solution.

The combination subtask of case adaptation performs several cut-and-paste crossover
operations. Each crossover is done on two randomly-chosen “parents” from the population of
potential solutions, at randomly-chosen crossover points, and produces two “offspring”
suggested solutions. The modification subtask performs several mutation operations. Each
mutation produces a new “offspring” suggested solution by:

randomly choosing a “parent” from the population of potential solutions,
randomly selecting an element to mutate in the description of the parent,
randomly choosing an attribute of that element to mutate, and

randomly selecting a new value for that attribute.

Knowledge of which values are valid for which attributes can be used so that mutation
does not suggest completely nonsensical solutions. If the process model were to be used to
design buildings, for instance, it would be a waste of time for mutation to change the value of
the number-of-stories attribute from 25 to 834 or -15, for instance.

The evaluation subtask of case adaptation analyses a suggested solution according to
domain constraints. Depending on the domain, different constraints may have to be satisfied
in order for a solution to be considered acceptable or satisfactory. A fitness value is assigned



during evaluation to each suggested solution. The total fitness F of a given solution, given N
constraints (C; through Cy) and M problem requirements (R; through Ry), is calculated with
the following equation:

F=SG + SR
i=1 j=1
where G = 0 if constraint G is not violated by the solution or

G =1if constraint G is violated by the solution, and
R =0 if requirenment R is met by the solution or
R =1if requirement R is not met by the sol ution.

Convergence to an acceptable solution occurs if an individual in the population has a
total fitness of 0, meaning that none of the constraints has been violated and all of the problem
requirements have been met.

The selection subtask of case adaptation takes all of the evaluated individuals in a
population of suggested solutions, including those inherited from previous adaptive cycles and
those generated in the current one, and keeps the k best ones to serve as the initial population
of the next cycle. The value of k, as well as the number of offspring produced at each cycle by
crossover and mutation, is chosen so that the size of the population does not change from one
cycle to the next. Thus, the value of k depends on the number of cases initially retrieved from
memory.

In this method of case adaptation, the synthesis of potential solutions is done in a task-
and domain-independent fashion. The power of mutation can be enhanced by providing
access to some simple domain knowledge, namely the values that are valid for the attributes
that describe objects in the domain, as mentioned above. But on the whole, domain
knowledge is needed only for evaluating the generated solutions to determine their quality. In
other words, recognition (analytical) knowledge, rather than generative knowledge, is needed
to apply our method to a given domain.

3 Implementation and Domain

We have implemented our ideas in a computational system named GENCAD written in
Common LISP. Our method of case adaptation has been applied to the structural engineering
design of high-rise buildings [5] and to the layout design of residences such that they conform
to the principles of feng shui (pronounced “fong sway”), the Chinese art of placement. Here
we describe the feng shui application.

Feng shui, also known as Chinese geomancy, is an ancient technique that, among other
things, determines the quality of proposed or existing layouts of residences according to
several rules of thumb. Some of these heuristics seem to have a basis in common sense, or in
a psychological or sociological appreciation of the human beings that inhabit (or intend to
inhabit) the residence. Other heuristics seem to be of a more superstitious nature.

There are several different feng shui sects that may contradict each other or place
different priorities on different aspects of residential layouts. Despite this variety, of prime
importance to performing any feng shui analysis is information on the relative positions of
objects. In addition, other attributes of objects are usually also taken into account, such as



their orientations, shapes, and relative sizes. In our work we have used the knowledge of feng
shui presented in [6], which corresponds to the Tibetan black-hat sect of feng shui.

Feng shui analyses different aspects of a residential layout to determine its
auspiciousness or lack thereof. Some classes of inauspicious layouts can be “cured” by the
proper placement of an acceptable curing object. Thus, feng shui knowledge is complex, in
that some potentially bad layouts can actually be acceptable if the proper cure is present. It is
not just a matter of determining whether a layout is “good” or “bad,” but even if it would
normally be considered bad, one has to determine whether it has been cured or not before
rejecting it outright.

The feng shui knowledge contained in [6] applies to three different levels of description
of a residence:

- The landscape level (the location of a residence with respect to other objects in its

environment such as mountains, rivers, roads, etc.),

The house level (the relative placement of the rooms and functional spaces within a
residence, such as bedrooms and bathrooms, as well as the connections between
them, such as doors and windows), and

The room level (the location of furniture, decorations, and other objects within
each room or functional space in a residence).

GENCAD applies its case adaptation GA to one of the three levels of description of a
residence at a time. This is because there are very few feng shui constraints that relate objects
belonging to different levels of description; the constraints involve relations between objects
within the same level. Thus, potential solutions to the new problem at the landscape level can
be evolved (and evaluated) independently from potential solutions to the same new problem at
the house level, etc. For other domains, GENCAD’s GA might have to operate on and evolve
hierarchical solutions containing several levels of description at once. This will have
implications for the speed of convergence as well as the complexity of the implementation of
the crossover and mutation operators.

4 Knowledge Representation

Feng shui analysis assumes knowledge of spatial relationships among the objects at the
different levels. Absolute locations and exact measures of distances and other geometric
quantities are not as important. Because of this, a qualitative spatial representation has been
chosen to describe the locations of objects within each of the three levels. We locate objects
on each level in a 3x3 spatial grid, with each sector within the grid assigned a unique number
between 1 and 9 to identify it. The grid is shown as follows, with north assumed to be at the
top of the page:

1(2|3
415|6
7189

Objects can occupy more than one grid sector, and grid sectors can contain more than
one object, making the representation flexible. The resolution of this representation is not
high, but considering the qualitative nature of a typical feng shui analysis and the number of
objects that typically need to be represented at each of the three levels, it is adequate in most
cases.



4.1 Case Representation

GENCAD?’s case library currently contains 12 cases, each of which describes one of Frank
Lloyd Wright’s prairie houses, obtained from [7]. Note that the designs of these houses do not
necessarily conform to the principles of feng shui. However, designs that are acceptable to
feng shui practitioners can still be generated by evolving combinations and mutations of the
features of the design cases. If the original cases did conform to feng shui practice, given a
new problem, convergence to a solution acceptable to feng shui practitioners might be faster,
but this is not a requirement of our case adaptation method.

Each of GENCAD'’s design cases is a residence described at the landscape, house, and
room levels. Within each level, objects are represented using attribute-value pairs to describe
features that are relevant to feng shui analysis. Some attributes such as locations and types of
objects are required for all objects, whereas others such as shapes and steepness are optional,
and don’t even make sense for some objects. A diagrammatic example of a residence at the
landscape level is shown in Fig. 2. This is followed by an abbreviated version of the symbolic
case representation of the same residence.

Landscape Level:

Dragon Mountain

N

)

My House Fish Pond

D,

—
=

>
—

Driveway

Figure 2. A residence and its place in the landscape.

(((level landscape)
(elements (((type nountain) (nane dragon-nount ai n)
(location (1 2 4)) (steepness high) ...
((type pond) (name fish-pond) (location (6))
(clarity nmurky) ...
((type house) (nane ny-house) (location (5)))
.)))



When running GENCAD at the landscape level, this is the fragment of a case that
would form part of the population of the GA. The fragments describing the house and room
levels would be dealt with separately. The list of attribute-value pairs is modified through
mutation and combined with that of other cases through crossover as the GA proceeds.

4.2 Representation of Feng Shui Analysis Knowledge

Feng shui analysis knowledge is used in the evaluation function of the GA. We have taken the
text description of the analysis knowledge and converted it to a set of constraints; each
constraint is implemented as a procedure. There are several constraints at each of the three
levels of feng shui description.

An example of a feng shui constraint at the landscape level, quoted directly from [6], is:

A house facing a hill will be bad...CURE: |If a house faces
a nmountain and the backyard is a garden, place a spotlight
in the back of the garden and shine it toward the top of
the house, or install a flagpole at the rear of the garden
to balance ch’i. [Page 35]

This constraint is implemented by first finding the description of all the houses and
mountains/hills at the landscape level, particularly their locations and the orientations of the
houses (if known). A predicate facing has been written that, given the location and orientation
of an object, and the location of a second object (within the 3x3 grid), determines whether or
not the first object faces the second (even partially). If any of the houses is located and
oriented such that it faces any of the mountains/hills in the landscape, then the constraint has
been violated. However, first we must check whether or not a cure is present for the
constraint violation, i.e., if there is a garden behind the violating house, and if so whether there
is a flagpole in it, or a spotlight oriented towards the house. A predicate behind has been
written that, given the location of an object, and the location and orientation of a second
object, determines whether or not the first object is behind the second. The pseudocode that
performs this analysis, i.e., the procedural representation of the constraint, given a proposed
solution at the landscape level S, is shown as follows:

Get the list Hof all houses in S
Cet the list Mof all nmountains/hills in S
Get the list Cof all potential cures for this constraint
inS;
For each house h in Hor until a bad onmen has been found:
Get the location | h of h;
Get the orientation oh of h;
For each mountain/hill min Mor until a bad onen has
been found:
Cet the location | mof m
I f facing(lh,oh,|n) Then:
Get the list Gof all gardens in S;
Set flag g-behind? to Fal se;
Repeat
Get the next unprocessed garden g in G
CGet the location | g of g;



I f behind(lg,Ih,oh) Then
Set flag g-behind? to True;
Until g-behind?=True or all gardens in G have
Been processed;
I f g-behi nd?=True Then
For each potential cure c in Cor until a bad
omen has been found:
Get the location |Ic of c;
Get the type tc of c;
If tc=spotlight Then:
CGet the orientation oc of c;
If facing(lc,oc,lh) and subset(lc,Ig)
Then signal a bad onen situation;
El se
If subset(lc,IQ)
Then signal a bad onen situation

5 Evaluation and Experimental Results

In this section we evaluate our evolutionary case adaptation method according to three issues:
the coverage of the method, its efficiency, and the quality of the solutions it produces.

5.1 Coverage

Often, CBR is criticised because even large case bases are not guaranteed to cover the entire
search space, thus making some problems unsolvable using “pure” CBR. In our framework,
even small case bases can provide sufficient information on typical structures and contents of
solutions to problems in the domain for the method to eventually converge to a solution. Of
course, the larger the case base, the more cases are likely to be retrieved given a new set of
problem requirements, and the faster the GA is likely to find a satisfactory adaptation of their
features and converge.

If N cases are initially contained in the population of the GA, then after 1 cycle of the
GA the proposed solutions in its population will combine features from at most 2 cases (due to
crossover). Thus, after N-1 cycles some of the proposed solutions in the population can
combine features from all of the N retrieved cases. The selection operator in the GA ensures
that only those combinations that seem to be leading towards an acceptable solution are kept
for future GA cycles, i.e., it helps to prune the search.

But even an exhaustive search of all the possible combinations of the features of all
retrieved cases is not guaranteed to find satisfactory solutions to the new problem. The
inclusion of a mutation operator in the GA, in addition to combination, ensures that all points
in the search space can potentially be reached. Of course, whether a certain point will be
reached or not depends on the particular sequence of mutations and combinations followed
during a given application of the GA to the retrieved cases. The mutation operator introduces
into the proposed solutions features that weren’t present in any of the originally retrieved
cases, or different values for those features that were present. Thus, our method can
potentially cover the entire search space, even if a large case base is not available.

5.2 Efficiency



We have explored the efficiency of combining GA’s with CBR by comparing our method with
a GA that is exactly the same except for the lack of cases. In the alternative method, instead
of initiating the GA search with a population consisting of cases retrieved from memory, we
initiated it with randomly generated “cases” (i.e., random starting points in the search space).
In this way, any differences in efficiency will be attributable to the use of CBR as the guiding
framework, and we can evaluate our decision to combine the two Al paradigms of CBR and
GA'’s.

In order to perform this efficiency experiment, GENCAD was run 20 times using 12
cases retrieved from a case base of floor plans of Frank Lloyd Wright prairie houses, and 20
times using 12 randomly-generated cases, on the same problem. The problem specification
for this test problem (at the landscape level) is:

(((level Iandscape)
(requirements ((house 1) (river 1) (trees 2)))))

This problem specification can be interpreted as “we want to build a house on a
property in which there is a river, and we’re thinking of planting two clumps of trees around
the house.” The problem is now to use GENCAD to generate a configuration containing these
four elements, specifying their relative positions within the landscape, such that the
configuration is auspicious according to the principles of feng shui.

GENCAD was given a limit of 500 GA cycles in which to find an acceptable solution,
i.e., if convergence did not occur by cycle 500, the search was ended without a solution being
given. Some of the cases in the randomly generated case base, as well as the Frank Lloyd
Wright cases, do contain two clumps of trees, and/or a house, and/or a river in the landscape.
In addition, there are configurations of these four types of element that are valid according to
feng shui practice. Therefore, achieving a solution through the cyclical combination and/or
mutation of the cases retrieved from either case base is theoretically possible.

In the experiment, 5 of the 20 trials using the random starting points converged.
Similarly, 5 of the 20 trials using the Frank Lloyd Wright cases converged. Thus, whether
cases or random starting points are used to initiate the search doesn’t seem to make a
difference as far as the frequency of convergence. However, a clear difference can be seen
when we analyse the number of GA cycles required before convergence occurred (in those
trials in which it did occur), as seen in Table 1.

Table 1. GA cycles required before convergence:

Trial # Random Trial # FLW cases
1 114 25 54
9 333 31 34
11 357 36 32
14 274 37 406
17 160 39 90
Avg. : 241.6 Avg. : 123. 2




As can be seen from the results, when cases are used to guide (i.e., provide starting
points for) the search, convergence occurs on average twice as fast as when the search is
initiated from random starting points. This demonstrates the efficiency of combining the ideas
of CBR with those from GA’s. Convergence does not always occur, as can also be seen (or
does not occur within a reasonable number of iterations). Whether it will converge or not, or
how rapidly it will converge, can vary greatly due to the random nature of the genetic
operators of crossover and mutation. However, the process can be applied again and again to
the same problem, using the same initial set of retrieved cases, and it is possible that it will
converge in future attempts.

5.3 Quality

The use of CBR as the overall framework helps ensure that the solutions proposed by our
method are of high quality. For example, a typical problem specification for a floor plan
layout at the house level is that the house should have 3 bedrooms and 2 bathrooms. A
residence of this size typically also has, as a minimum, a kitchen, a living room, and a dining
room. These are not normally given as requirements, but it is an implicit assumption that any
solution will have these additional rooms.

Now let us assume that we used the problem specification mentioned in the last
paragraph to perform a GA search using randomly generated initial solutions, or to perform an
exhaustive search of the solution space, for instance. Such searches would most probably
eventually find a solution that has 3 bedrooms and 2 bathrooms, and that satisfies any domain
constraints (such as relationships among the rooms acceptable to feng shui practitioners). But
it would be likely that these would be the only components that would be present in the
solution. Unless further knowledge and heuristics were used to guide the search, solutions
would be minimalistic.

Instead, by using cases that include Kitchens, living rooms, and dining rooms (and
perhaps additional rooms that might be considered to be useful post facto such as pantries) to
initiate the search, the solutions to which our method will converge will most likely also
include these important but unspecified rooms. Thus, the quality of solutions proposed by our
method is equal or greater than if CBR were not used as the guiding framework. Cases
provide complete scenarios that serve to guide both the structure and contents of proposed
solutions.

6 Discussion

We have presented a case adaptation method that is based on ideas from genetic algorithms.
Variations on retrieved cases are evolved incrementally, and at each cycle their quality is
verified and the best variants from amongst the initial population plus the new variants
generated at the current cycle are kept. This evolutionary method of case adaptation combines
the benefits of case-based reasoning and other knowledge-based approaches with those of
general-purpose problem solvers such as genetic algorithms.

For instance, being able to use starting points for problem solving search based on
similar past experiences, and being able to apply the process model to highly-specialised
problem solving domains are two advantages of CBR. On the other hand, having a large
number of operators with greatly differing effects available, and being able to apply the
process model to a wide variety of problem solving domains are two advantages of GA’s. Our
evolutionary method of case adaptation benefits from having all of these characteristics.



Domain knowledge is required and represented in the form of constraints used for the
evaluation of proposed solutions; this is recognition knowledge, not generative knowledge.
This difference with other approaches is especially important in applying our method to tasks
such as design. In design it is relatively easy to recognise whether a proposed design is an
acceptable solution for a given problem or not, whereas it is quite difficult to come up with a
set of reasoning steps or heuristics to follow that will lead to the generation of acceptable
designs. The knowledge engineer’s task of knowledge elicitation and knowledge acquisition
is thus simplified when using our evolutionary approach to case adaptation.

This use of constraints for evaluation rather than generation is one of the differences
between our work and that of others that have used constraint-satisfation techniques in the
context of CBR, for instance [8], [9], [10], or [11]. In these projects, constraints with
potentially complex interactions guide the generation of solutions to new problems by
adapting past cases. This generation of solutions uses domain knowledge or heuristics to
make what is generally an NP-complete problem tractable. In our method, the constraints are
independent of each other, and they help in a cumulative fashion to eliminate bad solutions,
rather than in a mutually interacting way to generate good ones.

There has been other work in the past that has combined concepts from GA’s with
CBR. [12] presents a GA that is initialised based on the information held in cases. However,
in [12] cases contain descriptions of past executions of a GA (e.g., the values of the GA
parameters, the task environment in which those parameter values were used successfully,
etc.), irrespective of the type of problem being solved with the GA. Thus, cases help the GA
dynamically adapt to changing problem situations; the authors use concepts from CBR in aid
of GA’s. In our work, on the other hand, cases contain descriptions of known solutions for the
type of problem being solved, and these cases provide guidance for the search that our case
adaptation GA will perform; thus, we use concepts from GA’s in aid of CBR.

The research presented in [13] is more similar to ours, in that cases contain descriptions
of solutions to the type of problem being solved, and a GA is used to adapt the cases to solve
the problem. However, [13] is not a pure CBR approach, as only a small fraction (10%-15%)
of the initial population in the GA comes from cases in memory; most of the initial population
is generated at random, as in a classical GA. The authors do this for valid reasons of
balancing exploration and exploitation in their GA search, but it provides a different flavour to
their research. Again, their work places more of an emphasis on the GA, and on making it
efficient and effective, than on contributing to CBR research. In contrast, we have examined
the possibilities of using a GA for case adaptation from the perspective of CBR.
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