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Abstract

Evolution as a metaphor borrowed from nature can be used to describe a design process.

However, this has generally been applied to the evolution of a solution which assumes the

problem does not change throughout the process. This is a naive assumption in design be-

cause the problem indeed changes. This paper considers the evolution of both the problem

and solution and introduces co-evolutionary design. This paper proposes two approaches

to implementing co-evolutionary design and also addresses the related issues of evalu-

ation and termination in a computational model. Finally, the paper considers how a co-

evolutionary system can generate and recognize emergent structure and behaviour.
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1 Introduction

Nature gives inspiration to research scientists. She is used to model both the evol-
utionary characteristics of a design process and to provide a framework for the
development of computational methods, e.g. genetic algorithms (Goldberg 1989),
evolutionary programming (Fogel, Owens & Walsh 1966) etc. Therefore, it seems
appropriate to implement a nature-inspired design process with a nature-inspired
computational paradigm. In section 2, co-evolutionary design is introduced where
the assumption of having a fixed goal (problem) is removed. The problem is al-
lowed to change over time. The co-evolutionary design model leaves us to consider
its implications on evaluation and termination. Another important research agenda
follows, which is emergence in the context of co-evolutionary design. Emergence
of behaviours and structures are discussed in section 3. Experiments are reported
in section 4. Finally, the paper is closed by the conclusion in section 5.
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2 Problem-Design Exploration as Co-evolution

A design process is traditionally viewed as a sequential process model from the
formulation of the problem to the synthesis of solutions. In his book, Simon (1981)
regards design as a state-space search where a problem leads to solution. However,
to find the solution is seldom a one-off activity. To be more practical, there are
many versions of solution generated during the course of design, where each cur-
rent one is, in general, an improvement over the previous one. This kind of syn-
thesis of solutions can be viewed as an evolutionary system over time.

The view of design as state-space search has dominated the research direction of
the AI-in-Design community for some time. This is an attractive assumption be-
cause what is once a complex human activity is reduced to a relatively manageable
computing task.

However, this simplified view faces a lot of challenges (Corne, Smithers & Ross
1994), (Gero 1994), (Maher & Poon 1996). The major criticism is on the assump-
tion that a problem is defined once-and-for-all. This is definitely not true for design.
The central tenet behind the opposing views is that design should be considered as
an iterative process where there is interplay between problem reformulation and
solution generation.

According to the evolutionary design process model offered by Hybs & Gero
(1992), the formulation of functional requirements is to define expected behaviour,���

, which is represented as the problem space. The solution space can be con-
sidered to contain structure elements where the design process is to search the right
combination of structure elements to satisfy the requirements,

���
. The behaviour

exhibited by the current structural combination (
���

) is compared against
���

in the
evaluation process. Reformulation, which is defined as �	� �
�

, is conducted if
necessary.
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Fig. 1. Co-evolution of problem-space and design solution-space

Maher & Poon (1996) propose to model this problem-design exploration as co-
evolution. This is graphically illustrated in Figure 1 as the interaction of problem
space (the required behaviour) and solution space (the potential structural combin-
ations). The diagram highlights the co-evolution of the behaviour-space with the
structure-space over time and has the following characteristics:
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(i) There are two distinct search spaces: behaviour-space and structure-space.
(ii) These state spaces interact over a time spectrum.

(iii) Horizontal movement is an evolutionary process.
(iv) Diagonal movement is a search process where goals lead to solution. This can

be the
(a) Downward arrow: “Problem leads to Solution” or synthesis where

��� �
��� ����� . The behaviour-space(t) is the design goal (the required behaviour)
at time t and structure-space(t) is the solution space which defines the cur-
rent search space for design solutions.

(b) Upward arrow: “Solution refocuses the Problem” or reformulation where
� � ���

. The structure-space(t) becomes the goal and becomes the selec-
tion force to evaluate individuals in the behaviour-space at time t+1 .

This model depicts two evolutionary systems. The evolutionary systems are the
behaviour-space and the structure-space. The evolution of each space is guided by
the most recent population in the other space. The basis for co-evolution is a simple
genetic algorithm (GA) where special consideration is given to the representation
and application of the fitness function so that the problem definition can change in
response to the current solution space.

2.1 Co-evolutionary Algorithms

The co-evolution model is implemented using a modified genetic algorithm. The
co-evolution of the design genes (solution space) and the fitness function (beha-
viour space) can be implemented with the following two approaches:

(i) CoGA1: Combined Gene Approach
A single composite genotype is formed by the combination of an expected
behaviour and a design solution (Maher & Poon 1995). Since the fitness func-
tion is defined locally for each design solution, the measurement of a pheno-
type represents a local fitness value. Because of the unique representation, the
basic GA is modified to have two phases in each generation. In the first phase
(change of focus) of a generation, the genetic operators modify the behaviour
part of a genotype, while the operators modify the solution part in the second
phase (generation of alternatives). This approach can be viewed as a tightly-
coupled, or a host-parasite, co-evolution where each parasite tries to adapt to
a specific host.

(ii) CoGA2: Interacting Population Approach
Two spaces are modelled as two sets of genotypes and phenotypes: one for
modelling expected behaviour and one for modelling design solutions (Maher
& Poon 1996). Hence, fitness of individuals in the population of the problem
requirements and population of design solutions is evaluated alternatively, i.e.
one generation will have behaviours being evaluated and the other generation
will have the structures evaluated. The current best individual from a popula-
tion serves as the fitness measurement for individuals in another population in
the next generation. This approach can be viewed as a loosely-coupled, or a
prey-predator, co-evolution where the prey has to adapt to a variety of predat-
ors.
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The emphasis of interaction between solution and requirements of these two ap-
proaches helps to identify complex interaction between structure variables, as well
as the less attended behavior variables.

2.2 Fitness Evaluation

The performance of a solution is traditionally evaluated against a fixed goal. This
is not so in a co-evolutionary design when the fitness function (goal) changes over
time. A fitness function, in a co-evolutionary design, is important because it also
represents how one space exerts its influence to the evolution of another space. The
fitness function changes with time but it should maintain relevance to the initial ex-
pectation. Hence, we define a fitness function in a co-evolutionary paradigm to be
a concatenation of initial requirements ��������� and current best (behaviour or struc-
ture), CB(B or S), i.e. Fitness = �����	����
 CB (B or S). There are two important con-
cepts here: the Current Best Structure (CBS) and Current Best Behaviour (CBB).

CBS is the best individual from the structure space after a fitness evaluation to the
pool of plausible structures. This does not only serve as a passive end-product of an
evaluation. CBS turns out to become an active participant in the evaluation, i.e. the
reformulation of problem specifications, � � � �

. The CBS is incorporated into the
fitness function to evaluate the performance of phenotypes in the behaviour-space.

Likewise, CBB represents the individual which has the highest fitness score in
the behaviour space pool after assessment by the current fitness function. This
individual is also used in one of the evaluations, i.e. the synthesis of solution,��� � � � ����� . The CBB is empty at the beginning of the design process. However,
it becomes more complex as time progresses.

The balance between the initial requirements and the current best is another im-
plementation issue, i.e. whether �����	��� and CB (B � S) should have equal weight, or
should CB (B � S) should be more emphasized as time proceeds? This should be de-
termined by the designer as whether a solution should be more sensitive to current
best requirements or a solution should not deviate too much away from the initial
requirements.

2.3 Termination

One concern with the implementation of co-evolution in a computational paradigm
is the problem of termination. The challenge lies in how a program knows when is
the “right” time to stop. The potential candidate solutions might include:

– Initial Problem, ����	��� . The search is terminated when a generated solution satis-
fies the initial problem (requirements). This seems a logical answer as the pro-
gram finds what we want. However, this has thrown away the knowledge accu-
mulated in the CBB or CBS.

– Time. When the running time of a computational system exceeds a user-specified
time, it stops. This is a fair approach because, on the deadline date, even though

4



a human designer may find improvements can be made, he/she needs to submit
the design.

– Equilibrium. When the results from both the behaviour space and structure space
consistently show little variations over the past N generations, then it may be a
signal to stop the design process. This indicates the two spaces are in a balanced
ecology setting.

– Repeating Pattern. If the process does not converge to a solution, but several res-
ults repeat themselves, then this may be an appropriate time to stop. Such phe-
nomenon may also indicate the desired results fall on a pareto-optimal surface.
In terms of design, this is a signal that the problem can be satisfied by quite a few
solutions, the designer has attempted them all and begins to run out of ideas.

3 Emergence

The co-evolutionary model aims to show the interaction between the problem (or
the behaviour) space and solution (or the structure) space. If important and charac-
teristic features of the two spaces are useful to the design goal, they tend to domin-
ate the genotypes in a population. This is no exception in nature, emergence occurs
where new species are found and they exhibit characteristic traits. Emergence is an
important research issue in biology as well as in creative design. This has recently
drawn the attention of research workers in the design community, e.g. (Gero & Yan
1994), (Gero, Damski & Jun 1995), (Edmonds & Soufi 1992) etc. Here are a few
definitions on emergence offered by the design community.

“A property that is only implicit, i.e. not represented explicitly, is said to be an
emergent property if it can be made explicit.” (Gero 1992)

“... drawing might be thought of as a visual image together with an associated
description that imposes structure upon it. Thus a drawing may be thought of
as a structured entity. From this perspective, an emergent shape occurs when a
revised description, or structure, is discovered ...” (Edmonds & Soufi 1992)

“... emergent subshapes are... emergent entities and relationships – ones that they
never explicitly input ...” (Mitchell 1993)

The definitions offered from the design community are usually applied to shape
only. Hence, attempts are made to borrow definitions of emergence from other re-
search communities to enrich our understanding. Since the ALife (Artificial Life)
research community has also put emergence high on its research agenda, it is be-
neficial to survey what they have offered, particularly about emergent behaviour.

“... emergent properties ... collections of units at a lower level of organization,
through their interaction, often give rise to properties that are not the mere su-
perposition of their individual contributions ...” (Taylor 1990)

“The key idea is that functionality is made to emerge as a global side-effect of
some intensive, local interactions among components that make up the system
...” (Maes 1990)
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“Emergent functionality means that a function is not achieved directly by a com-
ponent or a hierarchical system of components, but indirectly by the interaction
of more primitive components among themselves and with the world.” (Steels
1991)

After reviewing definitions from ALife, an alternate definition of emergence in
design is offered. Emergence is defined here as a “global pattern as a result of
local interactions of low level units”. This alternative definition helps us to look at
emergence in design from a different perspective. In the next section, emergence is
addressed at the behaviour level. It is first argued that emergent behaviour, which
is a result of the local interaction of genes, is goal-oriented. The issue of genes in-
teraction is further elaborated in the Section 3.2. This is followed by a study to the
several approaches which can identify a “good” gene-pair. In Section 3.4, emer-
gence of behaviour and structure, and the framework of co-evolutionary design are
integrated to give a complete picture.

3.1 Emergent Behaviours are Goal-Oriented

Since the formulation of functional requirements is to define expected behaviour,���
(Hybs & Gero 1992), emergent behaviour must be goal-oriented. This complex

behaviour cannot emerge outside the context of a fitness function. For example,
if the design goal is to maximize the area of a floor plan, taking no explicit con-
sideration of the appropriateness of room arrangement, the fitness evaluation to a
design solution only derives a numerical result about the area of a floor plan. Since
there is no way to assess the quality of a floor plan, there will not be any complex
behaviour of room arrangement emerging from the design process. If emergent be-
haviours of room arrangement are sought, the fitness function must be modified to
cater for room arrangement as part of its evaluation.

To find an emergent behaviour is to find the interaction of unit behaviours which
contributes to the global fitness. When Fogel (1995) discusses the identification of
“good” building blocks in the context of genetic algorithms, he suggests that there
are no viable credit assignment algorithms for isolated genetic structures or beha-
vioural traits. These elements are highly integrated. According to his arguments,
credit assignment does not exist in evolution, it is a human construction. However,
it is also true that in biological systems, diseases are discovered to relate to cer-
tain genes in a chromosome. Hence, the credit assignment should not be thrown
away completely, both in natural and artificial worlds. In this situation, we propose
that emerging behaviour patterns derived from this computation are interpreted as
a statistical correlation between the complex evolved behaviour and the fitness of
the phenotype.

3.2 Interactions Between Genes

Our alternative definition of emergence emphasises on “local interactions of low
level units”. Adjacency is considered to be a kind of these interactions. In Gero &
Schnier (1995), they refer “adjacency” to be the consecutive drawing commands
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which draw the floor plan. In their example, only neighboring genes are allowed to
interact because of an implicit assumption. They assume the evolved structure is an
ordered pair where ����� � ���� � � ��� � .
The ordered pair adjacency interaction is a good approach if a chronological or
spatio-relationship is required, otherwise, this can be relaxed to keep the pair in
a set, i.e. 	
��� �� . To further relax the original approach (Gero & Schnier 1995) is
to break another implicit assumption. Their consideration of “adjacency” assumes
the genes to be arranged in a linear manner. The linear presentation of genes is a
human notation. The chemical notation for water, ���� , does not imply the actual
configuration of the molecule. In fact, a water molecule is not arranged as H-H-
O, but H-O-H. Hence, we can treat the behaviour variables to float around in a
space and can interact with other variables, either strongly or weakly. Since there
is no fixed a priori arrangement of genes, local interaction to neighboring genes
has many more interactions than a linear arrangement.

The consideration of how two behaviour variables interact depends upon the neces-
sity of chronological control and the basic assumption about genes arrangement. In
summary, the interaction scheme between two behaviour variables can be classified
as the following patterns with decreasing constraints:

(a) linear arrangement of genes and an evolved gene is an ordered pair
(b) linear arrangement of genes and an evolved gene is a set
(c) no predefined sequence of genes and an evolved gene is an ordered pair
(d) no predefined sequence of genes and an evolved gene is a set

3.3 Evolving New Genes

The output of the evolving representation of Gero & Schnier (1995) is a set of
new evolved complex representations from genetic cycles which statistically cor-
relate to “good” phenotypes. As a new evolved gene builds upon previous basic
genes, the complexity of an evolved gene increases. The genotypes in the appro-
priate space is incrementally restructured by the replacement of these evolving ele-
ments. Since emergence has been defined as a recognition of collective phenomena
resulting from local interactions of low level units, a complex evolving represent-
ation can thus be classified as an emergent representation. To follow this line of
argument, a complex evolving behaviour is an emergent behaviour.

An evolved gene is due to the interaction of two local genes: the gene-pair. This
new gene comes into existence when the contribution of a gene-pair, � � , is con-
sidered to be significant to the “goodness” of phenotypes. A phenotype can be con-
sidered as the design solution. The internal representation is called a genotype. A
mapping process is necessary to transform a genotype to a phenotype. A phenotype
is classified as a “good” one when its fitness value, ��� , exceeds a user-specified
threshold value, ��� ��� .

There are many approaches to find a “good” gene-pair. One approach is to find the
unit contribution of a gene in a “good” phenotype. This is done by dividing the
fitness value of a phenotype by the length of its genotype (Equation 1). As a result,

7



the contribution of each gene-pair is a two “unit gene contribution”. Since a gene-
pair may appear more than once in a genotype, the contribution of this gene-pair
for a particular genotype is a multiple of the gene-pair contribution (Equation 2).
The overall contribution of a gene-pair is a summary of contribution among the
“good” phenotypes (Equation 3). After gene-pairs from all “good” phenotypes are
examined, they are sorted in the descending order of their contributions in Gero
& Schnier (1995). If there are � gene-pairs in the list, the top 3% are classified as
evolved genes and each of them are assigned with a unique gene number. These
evolved genes are also added to the pool of basic genes. The corresponding gene-
pairs in all phenotypes are rewritten by new evolved genes so that these pairs are
not separated during crossover.

��� �	���� �
� �� � (1)

� � � ���
	 � � ��� �	���� (2)

� � �
��
����

� � � (3)

� � ���
����� � � �

�
������	 � � (4)

where � is the � ��� gene-pair�
is the

� ��� “good” phenotype� is the number of “good” phenotypes� � is the fitness value of
� ��� phenotype� � is the length of genotype of the

� ��� phenotype

	 � � is the number of occurrence � ��� gene-pair in the
� ��� phenotype� � ��� is the minimum threshold fitness value of a phenotype to proceed to the

analysis of its genotype� � �	���� is the fitness contribution of each unit gene in the
� ��� phenotype� � � is the fitness contribution of � ��� gene-pair in the
� ��� phenotype� � is the fitness contribution of � ��� gene-pair

Another approach is almost the same except there is a modification to Equation
3. This new approach normalizes the contribution of a gene-pair with respect to
its number of times of appearance. This aims to eliminate the low performing but
high frequency gene-pairs (Equation 4). However, these two approaches have an
implicit assumption that each gene provides the same contribution in a genotype,
� � �	���� . To overcome this limitation, a weight can be assigned for every gene to de-
rive each unit strength. The drawback of weight assignment is three fold: (1) to as-
sign a weight to each different gene is equally problematic, (2) to derive the weight
of an evolved gene is another open-ended issue and (3) it assumes the gene-pair
must be significant when two highly weighted genes are put together, which may
not be true.
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The third suggestion is a totally different approach. This approach only searches
for the existence of a gene-pair and does not try to find its share to the fitness of
a phenotype. The contribution of a gene-pair to a “good” phenotype is � if the
gene-pair exists in the genotype, regardless the number of times it can be found
in that genotype; otherwise, for that phenotype, the gene-pair scores a zero fitness
value (Equation 5). The overall contribution of a gene-pair is a total of its contribu-
tion among the “good” phenotypes. Corollary, this approach looks at all the “good”
phenotypes, and to count how many of their genotypes carry the concerned gene-
pair. The threshold fitness value, � � ��� , has dual purpose. On one hand, the � � ��� is
to determine whether a phenotype is good enough for further analysis. On the other
hand, � � ��� is to calculate the minimum threshold population size, � � ��� (Equation
6). In other word, smaller the � � ��� , a larger � � ��� is required, and vice versa (Fig-
ure 2). A gene-pair is evolved iff this pair is found in at least ��� ��� phenotypes in
the pool where these phenotypes have fitness values exceeding � � ��� and carry the
pair (Equation7).

� � �
��
����

� � (5)

where

� �
��� �� � if gene-pair i is in “good” phenotype j�

if gene-pair i is NOT in “good” phenotype j

� � ��� � � � ��� where � � ��� � ���	� � � ��� � ��
��
 (6)

where
� � ��� is the minimum contribution of a gene-pair to be qualified as an evolved gene� � ��� is the minimum threshold population size� 
��
 is the population size of the pool

� ��� � � ��� gene-pair i EVOLVES (7)

This approach is best illustrated with an example. The example is in two scen-
arios for a population of 50 genotypes (i.e. ��
��
 = 50): a high threshold and a low
threshold value. In the first scenario, the threshold is defined to be a high value, say,
0.9 ( � � ��� = 0.9). A gene-pair is classified as an evolved gene if the pair occurs in at
least 5 genotypes ( � � ��� = � � ��� = 5), where these few individuals have fitness value
no less than 0.9. If the threshold is lowered to 0.3 ( � � ��� = 0.3) in another scenario,
then the threshold population size goes up to 35 genotypes ( ��� ��� = 35). These two
scenarios demonstrate the relationship and sensitivity of � � ��� ( � � ��� ) to � � ��� .

We highlight a few options to calculate the “goodness” of a gene-pair and it is not
an exhaustive list. The last approach is preferred because it relies on the occurrence
of a gene-pair alone and avoids the time consuming credit assignment problem. If
a gene-pair is found in all the genotypes of a threshold size, this pair deems to be
useful in the contribution to the fitness of its corresponding phenotype. Finding an
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Fig. 2. Relationship between phenotype threshold value and threshold population size

appropriate algorithm for “good” gene-pairs is critical to the success of generating
meaningful and useful emerging behaviour/structure.

3.4 Computational Emergence in Co-evolutionary Design

We now consider computational emergence as part of co-evolutionary design. Al-
though Figure 3 shares the similar outline as in Figure 1, this figure further shows
the emergence of behaviour and structure. The diagram can be divided into three
parts, the behaviour dimension, the fitness function and the structure dimension.

At the start, individuals in the structure space are evaluated by the initial require-
ments alone. The individual phenotypes from the structure space are the manifest-
ation of genotypes, which are composed from the basic genes. After this evalu-
ation, phenotypes which achieve above a threshold value are classified as “good”
individuals. Their corresponding genotypes then undergo further analysis. Useful
gene-pairs are identified and each gene-pair is now treated as a gene on its own,
thus new structure genes emerge. These evolved genes are now integrated to the
pool of basic genes. They are also used to restructure the genotypes from the whole
population in structure space. Meanwhile, the best phenotype is selected from the
structure space to represent the CBS (current best structure), which combines with
the � ���	��� to form the fitness function for the behaviour space (shown as the round-
corner rectangle which sits on the upward moving line from the structure dimen-
sion to the behaviour dimension).

A similar processing happens in the next generation, except the genetic operations
are performed on behaviour space. The individuals in the behaviour space are eval-
uated by � ���	��� and CBS. Behaviour genes that evolve at the end of the generation
are also used to restructure the genotypes in the behaviour space. The best beha-
viour phenotype is identified as the CBB (current best behaviour). The CBB serves
as part of the evaluation function with � ���	��� for the structure space in the next gen-
eration.

Emergence of behaviour and structure is integrated to co-evolutionary design
(Poon & Maher 1996). The evolved (emerging) genes can become more complex
in each generation as an evolved gene may be composed of another evolved gene,
thus, this is a kind of hierarchical structure of emerging genes.
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co-evolution and emergence are applicable to quantitative design performance as
well as qualitative.

For the domain of steel braced frame design, the representation of the problem-
design spaces provides a range of design solutions that can be described geomet-
rically and more than one design foci. The design of braced frames for buildings is
done by a structural engineer with some constraints/requirements imposed by the
architect's layout of the building. The design foci considered here are: design for
architectural compatibility and design for structural resistance. These alternatives
are represented as the following four design performance criteria:

f0: measure of closeness to initial requirements
f2: measure of conformance to bay layout
f3: measure of structural efficiency
f4: measure of structural integrity

In our combined gene approach, a genotype consists of two parts: the problem part
and the solution part (figure 4). Including the focus of attention, the problem part
has five parameters, while the solution has seven feature elements which are neces-
sary to solve the problem.

n_storey h_storeycriteria   openw_bay type flip mirror eccent_1 eccent_2 m_storeys c_panel

PROBLEM   PART

SOLUTION   PART

Fig. 4. Genotype template of a braced frame

Figure 5 shows the distribution of foci of two of the runs. Each graph carries four
pieces of information, i.e. f0, f2, f3 and f4. The y-axis is the number of individuals
which uses a particular focus in one generation, while the x-axis is the generation
number. The two runs have remarkably different distribution. Run A is dominated
by f4 throughout all generations. However, there is competition between f3 and
f4 for Run B. Though f3 has gained momentum in the middle of the run, it lost
ground to f4 finally. This diagram shows how the problem part responds to the cur-
rent solution. Figure 5 shows how the fitness function changes over time, which is
in effect an evolving fitness function. The graphs show the variation in focus for the
braced frame solution. This demonstrates that our goal of exploration as a change
in focus during the design process occurred through the rise and fall of the propor-
tion of the population that used each design focus. More detailed discussion of this
experiment can be found in (Maher & Poon 1995).

The other experiment is on emergence when a floor plan is designed. To design a
floor plan encompasses two tasks: to draw a configuration of lines with spaces to
represent walls and rooms, and to specify the usage of each of the spaces. When a
design commences, the requirement, �����	��� , is usually given as a preliminary list of
desired room-types and room-adjacency. Room adjacency is defined to be rooms
which have a doorway which can lead a person from one room to another. The
topology of a floor plan is drawn with turtle graphics. The drawing commands
include up, down, left and right, with the addition of whether a door is to be in-
troduced. When the drawing process completes, it is an unlabelled floor plan. An
unlabelled plan is a plan where the spaces are not marked with their behaviour,
i.e. room-types. Hence, an unlabelled floor plan is assigned with the required room
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Run A Run B

Fig. 5. Comparison of distribution of foci

types as much as possible. The room-type assignment is under a set of constraints,
e.g. the invalid adjacency of room-types, minimum and maximum size of a room-
type, etc.

This experiment is carried out in CoGA2, hence, a current best (CB) is identified
at the end of each generation. The CBB or CBS is incorporated with the � ���	��� to
form the fitness function for the next generation. CBB is the best performing phen-
otype of room-types and adjacencies. CBS is the best performing geometric layout
of rooms and door locations. The run is set to terminate after 200 generations. Fig-
ure 6(a) is the best floor plan from the interaction between the problem and solution
space. This design is far from perfect because the aim of this example is to demon-
strate co-evolution and emergence; it is not targeted to generate a perfect floor plan,
hence, the algorithm to assign room types to spaces is very primitive.

During this 200 generations, there are 8 “good” gene-pairs added to the basic struc-
ture genes (eS), of which 7 of them came from generation 62, and the last one ap-
peared at generation 170. This is not an isolated case where it is observed that eS
always come in a sudden “burst”. Figure 6(b) shows two of the eS during the evol-
ution. In fact, gene-pair #27 is composed of another evolved-pair, and these two
genes contribute to the best solution. Figure 6(c) is the emerging behaviour (room-
adjacency) due to the interactions. There are 3 “good” gene-pairs added to the basic
behaviour genes (eB) during the run. They occurred at generation 69, 147 and 171
respectively. The time to form eBs is more scattered and they do not come in bulk.
These three eBs are also used by the best solution. There is no strong indication in
this run (or with any other runs) that an eB has any relationship with any eS, the
two phenomena happen independently. However, there is a stronger evidence that
the best solution usually encapsulates some of the eSs and/or eBs. Emerging genes
are obviously reused as building components as soon as they are identified.

5 Conclusion

This paper focuses on the characteristics of co-evolution in design and highlights
the ecological relationship between the problem (expected behaviour) space and
solution (structure) space. Computational approaches are proposed and difficult
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adjacency(dining, kitchen)

adjacency(game room, study)
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Kitchen
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(a) Best floor plan layout

(b) "Good" gene-pairs for structure

(c) "Good" gene-pairs for behaviour

gene 22

Fig. 6. Results of a floor plan layout design

implementation issues are addressed: the evaluation of individuals under a moving
target, and the problem of termination when it is implemented in a computational
paradigm. The concept of co-evolutionary design also leads to the possibility of
emergence: specifically the emergence of behaviours and structures. The defini-
tion of emergence is cross-posted from ALife community and further argues that
an evolving representation can be a means to implement emergence. The success
of an algorithm to find interesting behaviour depends on the crafting of the credit
assignment process. Co-evolution and emergence were illustrated in two different
design domains. The results demonstrate these two phenomena can be observed in
a computational approach to design.
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