

Towards Grammars for Cradle-to-Cradle Design

Douglas H. Fisher
Vanderbilt University

douglas.h.fisher@vanderbilt.edu

Mary Lou Maher
University of Maryland, College Park

marylou.maher@gmail.com

Abstract
Cradle to cradle design (C2C) considers material use and
reuse as integral to the composition and specification of the
design. Since grammars have been used extensively to
model design processes, we consider the possibilities of
grammars to model C2C design. Central to our proposal is
the idea that products cannot be designed in isolation, but
C2C desiderata can only be achieved by explicit design of
families of products that share material reuse possibilities.
Grammars, heuristic search and various forms of machine
learning are highlighted as critical in grappling with the
complexities of C2C design.

 Introduction
Cradle-to-cradle (C2C) design (McDonough & Braungart,

2002) recognizes that nothing short of full recycling of ma-

terials with no degradation in material quality is necessary

for long-term planet sustainability. C2C advocates looking

to the natural world as an ideal model of recycling, where

organic materials are continually recycled through proc-

esses of decay and growth. They propose design method-

ology that separates biological cycles and synthetic-

material cycles, enabling biological material to be re-

claimed through natural processes without synthetic and

toxic residue, and enabling the full reuse of synthetic mate-

rial through technological processes so as to eliminate re-

source depletion and toxic poisoning. While domain spe-

cialists define and elaborate these interacting cycles of ma-

terial use, there are ample opportunities for Artificial Intel-

ligence techniques to manage the complexities and articu-

late C2C design processes.

 C2C goals suggest the necessity of holistic approaches

that design the cycling of material, and include attention to

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the energy required to maintain the cycles. Reuse of mate-

rial from one product line can be cycled back to the same

product line or another product line. In reality, this already

happens through normal recycling (e.g., plastic bottles are

recycled into park benches), but the sources and targets of

recycling are typically identified after major design deci-

sions, leading to inefficiencies, material loss, and degrada-

tion. By designing C2C product families, reuse cycles can
be made more efficient, with known and predictable trajec-
tories for reused material.
 An open question is whether C2C design is an entirely

different concept from traditional design, or whether it is

reasonably modeled as traditional design with additional

constraints. Figure 1a first illustrates by the oval that a

critical problem in traditional design is that a product is de-

signed in isolation. In contrast, the products shown in the

square box of Figure 1b illustrate the concept of a product

family, where multiple products are designed within a sys-

tem of material use and reuse, which flows between prod-

uct lines. While there may still be materials that come from

outside the family and there are materials that are byprod-

ucts of the family production, a family design would seek

to minimize these and to exploit them in a still larger con-

text. That is, product families are dense subgraphs within a

larger network.

 Two example domains for C2C design are: low cost

housing, and products made of recyclable plastics. Sass

(2005) has developed low-cost designs of houses for de-

veloping-world communities where a set of designs could

be considered as a product family. While not concerned

with C2C explicitly, a large collection of house designs

used in this project illustrates the importance of product-

family design over (simply) many individual house designs

to minimize overall waste. A second domain, concerned

with C2C explicitly, is the Preserve product lines

(www.preserveproducts.com). Whereas the Sass project is

39

Artificial Intelligence and Sustainable Design — Papers from the AAAI 2011 Spring Symposium (SS-11-02)

a product family of same-type products (i.e., low-cost

houses), the Preserve line is heterogeneous, containing

many different kinds of products.

Figure 1: Traditional design vs C2C design.

Design Grammars
When considering the role of AI in sustainable design, we

start with grammars as a formal language that can describe,

generate, and/or check for C2C design. By starting with a

grammar as descriptive of C2C design, we begin to formal-

ize the principles of C2C design as a language, which can

also be used to generate example C2C designs. Our focus

is on the design of product families and the subordinate de-

signs of individual products, to include lifecycle concerns.

 We assume that the reader understands the basics of

grammars, so we only review terminology. A grammar is a

finite specification of a possibly infinite set of strings (or

language) – in this case, each terminal string (or hence-

forth, simply string) is a sequence of terminal symbols or

members of an alphabet; for now, each string represents a

product design, but in subsequent sections a string will

correspond to a product family. A string is a technical term

that refers to the terminal symbols and may include sym-

bols that separate one product from another. A grammar is

specified by a set of terminal symbols, a set of non-
terminal symbols, and a set of productions (aka rewrite

rules) of the form α � β, where α and β are collections of

terminal and non-terminal symbols. In the case of a con-
text–free grammar, α is always a single non-terminal sym-

bol and β can be any finite sequence of symbols. A deriva-
tion is defined by a sequence of transitions from a spe-

cially-designated start symbol, which is a member of the

non-terminal symbols, to a sequence of only terminal sym-

bols. A sentential form is an intermediate set of symbols

obtained through a sequence of zero or more productions,

beginning with the start symbol.

 There is a rich history of using grammars to describe de-

sign knowledge generally in AI. In particular, shape

grammars (Stiny 2008, 1980; Stiny and Gips 1972; Knight,

1998) are a variant on context free grammars (CFG) that

include shape rewrite rules that can be applied in a step-by-

step manner to generate a set of designs. An example of a

grammar for designing virtual worlds is described in Gu

and Maher (2004). Shape grammars have developed over

the years to include many extensions, such as parametric

grammars, color grammars, description grammars, struc-

ture grammars, parallel grammars, and so on, to address

different aspects of designs.

 Knight (1999) proposes at least two approaches to de-

veloping a grammar-based system that produces designs

meeting specified goals under constraints. A strictly gen-
erative approach incorporates knowledge into grammar

rules so that all generated designs satisfy the constraints. In

a generate-and-test approach the grammar is under-

constrained, and the initially generated designs are exam-

ined using an evaluation function for those that satisfy the

constraints. Naturally, there need not be a hard schism be-

tween strictly generative and generate-and-test methods –

even if all hard constraints can be encoded in the grammar,

there will likely still be preferences that are best captured

in an evaluation function. In general, the space of gram-

mar-based design methods extends with constraint-based

and optimization methods, and hybrids of them.

 We propose to adapt grammar-based approaches to C2C

design by (a) defining grammars for languages of product

family designs rather than languages of individual product

designs, (b) defining constraints and preference functions

for ranking product family designs by their amenability to

C2C principles (manufacture, use, disassembly and reuse),

and (c) taking steps through both first-principle analysis

and machine learning techniques towards strong(er) gram-

mars with derivations to strings that satisfy many of the

hard constraints and perhaps even some preferences.

Grammars for Product Design
We initially make some important simplifying assump-

tions. Foremost, we assume that a product is only repre-

sented by its material components. Each terminal symbol
represents ‘one unit’ of material, so the string ‘aabbbc’ rep-

resents a product with two units of material ‘a’, three units

of ‘b’, and one of ‘c’. With reference to Figure 1, this as-

sumption would translate to replacing each label (e.g.,

‘Product A’) by a string (e.g., ‘aabbbc’).

40

 Continuing, we assume that each non-terminal symbol

defines a (sub)language of product components -- the start

symbol of the grammar is a special case, defining the lan-

guage of products. Putting this together with our assump-

tions about the representation of a product, we might de-

fine a grammar for toothbrushes, with start symbol T and

productions:

T � Handle Head

Handle � Grip Back

Head � Base Bristles

Grip � aa

Grip � ab

Grip � aba

Back � bb

Back � b

Base � b

Bristles � c

One (leftmost) derivation in this grammar is

T � Handle Head (using T � Handle Head)

 � Grip Back Head (using Handle � Grip Back)

 � aa Back Head (using Grip � aa)

 � aa bb Head (using Back � bb)

 � aa bb Base Bristles (using Head � Base Bristles)

 � aa bb b Bristles (using Base � b)

 � aa bb b c (using Bristles � c)

Note that ‘ababbc’ is derivable, as well as ‘aabbbc’, and

whether these were regarded as ‘equivalent’ or not would

be judged by a preference function.

 The grammar above is context free, but context sensitive
transitions might also be introduced. For example, if it was

desirable that the total amount of material derived from

Back was sensitive to the amount derived from Grip, then

productions such as

aba Back � aba b

aa Back � aa bb

ab Back � ab bb

might be used instead of the context-free Back rules (here,

we ignore the possible reorganization of a grammar so as

to eliminate context sensitive rules, resulting in another

context free grammar).

 In design grammars generally, there is attention to repre-

senting connections between components in the grammar

and in derivations. We have thus far not addressed issues

of component connectedness, but rather viewed a product

as simply a bag of materials.

 While these assumptions are very limiting, they still al-

low progress on developing a framework for C2C design

grammars and methods for their development. For exam-

ple, we imagine a possibility in which standards for prod-

uct grammars are established, and automated means are

developed that find patterns across these product grammars

in search of desirable product families. The base grammars

over which this search occurs can be bootstrapped from ex-

isting products. For each product, a grammar can be in-

duced for which that product is but one string. By analyz-

ing the composite structure of the product, non-terminal

symbols can be introduced that reflect an aspect of the

composition, with at least one production enabling even-

tual derivation of the product, but with other productions

leading to other, functionally equivalent or very similar

products. These new strings might, for example, be com-

posed of different materials than the ‘seed’ product, where

functionally and physically related materials would be en-

coded as background knowledge. This strategy would be

an analytic form of generalization from very limited data

that was akin to explanation-based learning (DeJong and

Mooney, 1986; Yoo and Fisher, 1991) and experimental
goal regression (Porter and Kibler, 1986).

 Weak Grammars for Product Family Design

A grammar for a language of product families can be con-

structed from other grammars for product languages. For

example, suppose that we have a grammar that defines a

set (language, class) of toothbrushes, any one of which is a

possible product/artifact; the start symbol for this grammar

is T. Suppose that we also have a grammar defining a lan-

guage of hairbrushes, with start symbol H. A language of a

product family designs that include hairbrush and tooth-

brush products is defined by

S � [T] [H]

 Assuming that derivations starting with T and H produce

exactly one (non-NIL) terminal product each, the grammar

with start symbol S defines a language of product pairs, of

one toothbrush and one hairbrush per terminal product

family. Delimiters such as ‘[‘ and ‘]’ may be retained

throughout a derivation and in the final terminal strings,

but such boundaries might also be removed/ignored, allow-

ing product sentential forms to be interleaved at various

points in a product family derivation.

 Instead of the production above, we could introduce new

productions

S � SS

S � [T]

S � [H]

41

 Together with the productions given in the constituent

grammars, this new grammar defines a language of product

families of hairbrushes and toothbrushes with at least one

toothbrush or at least one hairbrush. It allows product fami-

lies with duplicate products (e.g., 2 instances of a particular

toothbrush ti and 3 instances of a particular hairbrush hk.

The language also allows for families that contain only

toothbrushes or only hairbrushes.

 In the case of duplicates, the cardinality of differing

product (duplicates) could be interpreted as a proportional-

ity specification (e.g., in a product family there is a 2/3 the

number of ti as there are of hk), which could be relevant for

resource planning and the like.

 A grammar for a product family defines an infinite set of

product combinations and duplicate cardinalities. The size

of the terminal strings (aka families) can be bound to a fi-

nite value, which also bounds the precision of product pro-

portionalities (e.g., bounding family size to 5 or less allows

2/3 of ti to hk but disallows an expression of 4/5 of ti to hk);

the size of the language may remain infinite, even with

such a bound on family size, if any of the constituent

grammars define infinite languages.

 Having defined a product family grammar as just de-

scribed, it is obvious that this too could be a constituent

grammar in a still ‘larger’ grammar and that the product

family could be a terminal in a still larger and richly orga-

nized language of product collectives. Nonetheless, our ex-

amples, for now, will correspond to the intuition that we

have grammars for ‘individual products’, from which we

can construct grammars for product families. In building

composite grammars from constituent grammars, we as-

sume that terminal and non-terminal symbols that have the

same names in different constituent grammars are the same

materials in the case of terminals and represent the same

component sets in the case of non-terminals. Thus, care

must be taken to standardize apart symbols across constitu-

ent grammars if such symbols represent different sets. If
constituent grammars share terminal and non-terminal
symbols, this presents opportunities for reorganization of
the composite grammar to more explicitly represent possi-
ble interactions between product derivations within a
product family.

 We return to Figure 1b at this point, to illustrate some of

our assumptions. Figure 1b, without the arcs, and with

product labels in the boxes replaced by strings of material

units (e.g., ‘aabbbc’ for Product A, ‘addeeef’ for Product

B, ‘bcdddee’ for Product D) is an instance of a product

family. Figure 2 explicitly shows such a structure, which

would be a string resulting from a derivation in a product

family grammar.

Figure 2: A product family under simplifying assumptions

Constraints and Preferences
In the previous two sections we have seen that grammars

can be constructed for generating and describing both

product designs and product family designs. That is,

grammars define a search space. Now we turn our attention

to constraints and preferences that can be used to evaluate

product family designs. As such, they can also be used to

guide the search for product family designs. Hard con-

straints define whether designs are acceptable or not. Pref-

erences define the desirability of some designs over others.

 We begin discussion of constraints and preferences by

considering families composed of existing product designs

only. This is an activity that tenacious recyclers might per-

form; looking as best they can for relationships between

existing products – grouping products designs together in a

way that maximizes recycled material with minimal cost

(e.g., energy). Given our assumptions, each and every

product design would be represented as a vector of materi-

als and essentially an integer amount of each material.

Given the huge space of all such represented product de-

signs (e.g., ‘abbbcc’, aaabddee’, bdefff’, …), we could ap-

ply unsupervised learning methods of clustering (Fisher,

2002) to group product designs, optimizing a tradeoff be-

tween maximizing within-family overlap in material shared

among product designs and minimizing between-family

overlap in shared material. Though the product family rep-

resentation we are currently considering does not include

arcs showing material flow trajectories, the intent of

maximizing within and minimizing between family mate-

rial overlap can be mapped to maximizing recycled content

at minimal cost.

42

 So-called constrained clustering (Basu et al, 2008) al-

lows analysts to impose constraints that require that some

objects (product designs) be grouped together, while re-

quiring that other products not be. For example, analysts

might know that certain materials are highly toxic in a way

that cannot be easily controlled during reclamation, there-

fore indicating that such materials be separated entirely

from product designs that can undergo routine reclamation.

 Other constraints and preferences that can be used to de-

sign product families as clusters of existing products could

be based on expected lifetimes of existing products, gener-

ating families in which time spans can be coordinated to

better insure material replenishment, or methods (and their

costs) of returning products to be recycled at the end of life

– we would want to favor products that can be packaged

together for example, thereby minimizing transportation

energy. These preferences and constraints all arise from

externalities, and absent an ability to explicitly represent

certain constraint and preference knowledge in the gram-

mar, it would remain in the evaluation function.

 Preferences and constraints that are useful for evaluating

families of existing products, are also presumably useful

for guiding the search for entirely new product designs,

and in our case this search is embedded in a search of

product families. Moreover and importantly, C2C con-

straints and preferences can be encoded into grammar rules

or preference functions so as to exclude new designs that

violate C2C principles. For example, McDonough and

Braungart (2002) talk about ‘monstrous hybrids’, which

are products that combine synthetic and organic material to

the detriment of recycling either effectively. To a large ex-

tent we imagine that monstrous hybrids can be excluded by

suitable crafting of production rules of constituent product

grammars.

 More generally, in addition to preferences and con-

straints applied to a string (i.e., product or product family),

constraints and preferences can be functions of the string

derivations, represented as a sequence or as a parse tree.

While a design-grammar derivation need not map directly

to manufacturing and/or disassembly steps of the terminal

product of the derivation, it is a natural bias to consider the

grammar as constructive. Indeed, if we assume a mapping

between grammar derivations and steps of manufacturing,

as well as disassembly procedures, then costs associated

with these activities can be reflected in an augmented

grammar. Costs could correspond to represent energy; they

could also represent materials used as positive costs and

reclaimed as negative costs, or rewards.

 For simplicity, we restrict ourselves to the case where

disassembly is the inverse of construction, and production

is associated with a forward cost (e.g., representing a con-

structive step) and a backward cost (e.g., representing a

disassembly step). In general, the backward and forward

costs may be quite different. Under these assumptions, a

preference function for designs is informed by the deriva-

tions for those designs, and in particular, costs associated

with those derivations. Because costs are associated with

individual productions, sentential forms at intermediate

points can be evaluated, and used to guide a heuristic

search through the space of possible derivations. In the

simplest case, the sum of forward and backward derivation

costs would be a factor in evaluating proposed product

families.

Challenges Ahead
From constituent grammars for product languages, each

augmented with production costs, we can define cost aug-

mented grammars for product family languages. But in the

weak approach outlined in the previous section, the evalua-

tive cost of a product family would necessarily be a simple

summation over the total forward and backward costs

across the products in a family. There are substantive chal-

lenges in defining grammars for product family designs

that more tightly couple the constituent grammars for indi-

vidual product designs. Put another way, we want gram-

mars that capture the rich interactions between product de-

signs suggested by Figure 1b.

 An approach that we are considering, with machine

learning at the heart of it, is to transition from weak to

strong methods. Recall that a weak generate-and-test

method is one in which the grammar is under-constrained,

defining a language that is a large superset of the C2C de-

signs. Designs that are found/generated during search are

subjected to an evaluation function that encodes constraints

and preferences; constraints eliminate those that violate

principles of C2C design, and preferences serve to rank the

surviving strings.

 In contrast, the strongest methods are those in which a

grammar derives only strings that satisfy the principles of

C2C design; these are the strictly generative approaches

described by Knight (1998). Designs stemming from

strong methods would likely still be evaluated by prefer-

ences for choosing among C2C designs.

 As a rule it is much easier to formalize a weak method

than a strong method for complicated domains. In fact, as

we have mentioned early on, methods span a continuum

between the weakest and strongest methods; machine

learning can traverse this continuum. Thus, a cost-effective

strategy for obtaining methods at the strong end of the

spectrum is to first specify a weak method, to include an

under-constrained grammar plus preferences and con-

straints. The weak grammar defines a search space, and

machine learning of search control knowledge, which is a

form of speedup learning (Yoo and Fisher, 1991), trans-

forms the system to the strong method that is more desired.

43

 We believe that this automated learning approach, which

backs up constraints and preferences into the generator is a

promising future component in a grammar based frame-

work for C2C design.

Acknowledgments. We acknowledge the information

available on the Preserve.com web site about their C2C

products and a discussion with Christie Lee at Preserve

about their approach to designing products with reusable

plastics.

References
Basu, S., Davidson, I., and Wagstaff, K. 2008. Constrained Clus-
tering. Chapman & Hall.

DeJong, G. and Mooney, R. 1986. Explanation-based Learning:

An Alternative View. Machine Learning. 1:145-176

Fisher, D. H. 2002. Conceptual Clustering. In W. Klosgen and J.

Zytkow (eds) Handbook of Data Mining and Knowledge Discov-
ery. Oxford, UK: Oxford University Press, pp. 388-396.

Gu, N. and Maher, M.L. 2004. A Grammar for the Dynamic De-

sign of Virtual Architecture Using Rational Agents, International
Journal of Architectural Computing, 4(1): 489-501.

Knight, T.W. 1998. Shape Grammars. Environment and Planning
B: Planning and Design Anniversary Issue, pp. 86-91.

McDonough W and Braungart M. 2002. Cradle to Cradle, New

York: North Point Press.

Porter, B. and Kibler, D. 1986. Experimental Goal Regression: A

Method of Learning Problem Solving Heuristics. Machine Learn-
ing 1: 249-286.

Sass L. 2005. A Production System for Design and Construction

with Digital Fabrication, MIT; Cambridge,

MA/USA:http://ddf.mit.edu/projects/CABIN/cabin_mit_2005.pdf

Stiny, G. 2008. Shape: Talking about Seeing and Doing, MIT

Press.

Stiny G. 1980. Introduction to Shape Grammars, Environment
and Planning B 7:343-351.

Stiny G. and Gips J. 1972. Shape Grammars and the Generative

Specification of Painting and Sculpture, in C.V. Freiman (ed),

Proceedings of Information Processing 71, North Holland, Am-

sterdam, pp. 1460-1465.

Wackernagel M. and Rees W. 1996. Our Ecological Footprint:
Reducing Human Impact on the Earth, New Society Publishers.

Yoo, J., & Fisher, D. 1991. Concept formation over explanations

and problem-solving experiences. Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, Sydney, Aus-

tralia: Morgan Kaufmann, 630--636.

44

	SSS-11
	2011 AAAI Spring Symposia Page
	Symposia Contents
	SS-11-01
	SS-11-02
	SS-11-03
	SS-11-04
	SS-11-05
	SS-11-06
	SS-11-07
	SS-11-08

	Help
	Terms
	AAAI Website
	Symposium Series Website

