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Abstract 
Cradle to cradle design (C2C) considers material use and 
reuse as integral to the composition and specification of the 
design. Since grammars have been used extensively to 
model design processes, we consider the possibilities of 
grammars to model C2C design. Central to our proposal is 
the idea that products cannot be designed in isolation, but 
C2C desiderata can only be achieved by explicit design of 
families of products that share material reuse possibilities. 
Grammars, heuristic search and various forms of machine 
learning are highlighted as critical in grappling with the 
complexities of C2C design. 

 Introduction   
Cradle-to-cradle (C2C) design (McDonough & Braungart, 

2002) recognizes that nothing short of full recycling of ma-

terials with no degradation in material quality is necessary 

for long-term planet sustainability. C2C advocates looking 

to the natural world as an ideal model of recycling, where 

organic materials are continually recycled through proc-

esses of decay and growth. They propose design method-

ology that separates biological cycles and synthetic-

material cycles, enabling biological material to be re-

claimed through natural processes without synthetic and 

toxic residue, and enabling the full reuse of synthetic mate-

rial through technological processes so as to eliminate re-

source depletion and toxic poisoning. While domain spe-

cialists define and elaborate these interacting cycles of ma-

terial use, there are ample opportunities for Artificial Intel-

ligence techniques to manage the complexities and articu-

late C2C design processes.  

 C2C goals suggest the necessity of holistic approaches 

that design the cycling of material, and include attention to 
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the energy required to maintain the cycles. Reuse of mate-

rial from one product line can be cycled back to the same 

product line or another product line. In reality, this already 

happens through normal recycling (e.g., plastic bottles are 

recycled into park benches), but the sources and targets of 

recycling are typically identified after major design deci-

sions, leading to inefficiencies, material loss, and degrada-

tion. By designing C2C product families, reuse cycles can 
be made more efficient, with known and predictable trajec-
tories for reused material.  
 An open question is whether C2C design is an entirely 

different concept from traditional design, or whether it is 

reasonably modeled as traditional design with additional 

constraints. Figure 1a first illustrates by the oval that a 

critical problem in traditional design is that a product is de-

signed in isolation. In contrast, the products shown in the 

square box of Figure 1b illustrate the concept of a product 

family, where multiple products are designed within a sys-

tem of material use and reuse, which flows between prod-

uct lines. While there may still be materials that come from 

outside the family and there are materials that are byprod-

ucts of the family production, a family design would seek 

to minimize these and to exploit them in a still larger con-

text. That is, product families are dense subgraphs within a 

larger network. 

 Two example domains for C2C design are: low cost 

housing, and products made of recyclable plastics. Sass 

(2005) has developed low-cost designs of houses for de-

veloping-world communities where a set of designs could 

be considered as a product family. While not concerned 

with C2C explicitly, a large collection of house designs 

used in this project illustrates the importance of product-

family design over (simply) many individual house designs 

to minimize overall waste. A second domain, concerned 

with C2C explicitly, is the Preserve product lines 

(www.preserveproducts.com). Whereas the Sass project is 
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a product family of same-type products (i.e., low-cost 

houses), the Preserve line is heterogeneous, containing 

many different kinds of products. 

 

Figure 1: Traditional design vs C2C design. 

Design Grammars 
When considering the role of AI in sustainable design, we 

start with grammars as a formal language that can describe, 

generate, and/or check for C2C design. By starting with a 

grammar as descriptive of C2C design, we begin to formal-

ize the principles of C2C design as a language, which can 

also be used to generate example C2C designs. Our focus 

is on the design of product families and the subordinate de-

signs of individual products, to include lifecycle concerns.  

 We assume that the reader understands the basics of 

grammars, so we only review terminology. A grammar is a 

finite specification of a possibly infinite set of strings (or 

language) – in this case, each terminal string (or hence-

forth, simply string) is a sequence of terminal symbols or 

members of an alphabet; for now, each string represents a 

product design, but in subsequent sections a string will 

correspond to a product family. A string is a technical term 

that refers to the terminal symbols and may include sym-

bols that separate one product from another. A grammar is 

specified by a set of terminal symbols, a set of non-
terminal symbols, and a set of productions (aka rewrite 

rules) of the form α � β, where α and β are collections of 

terminal and non-terminal symbols. In the case of a con-
text–free grammar, α is always a single non-terminal sym-

bol and β can be any finite sequence of symbols. A deriva-
tion is defined by a sequence of transitions from a spe-

cially-designated start symbol, which is a member of the 

non-terminal symbols, to a sequence of only terminal sym-

bols. A sentential form is an intermediate set of symbols 

obtained through a sequence of zero or more productions, 

beginning with the start symbol. 

 There is a rich history of using grammars to describe de-

sign knowledge generally in AI. In particular, shape 

grammars (Stiny 2008, 1980; Stiny and Gips 1972; Knight, 

1998) are a variant on context free grammars (CFG) that 

include shape rewrite rules that can be applied in a step-by-

step manner to generate a set of designs. An example of a 

grammar for designing virtual worlds is described in Gu 

and Maher (2004). Shape grammars have developed over 

the years to include many extensions, such as parametric 

grammars, color grammars, description grammars, struc-

ture grammars, parallel grammars, and so on, to address 

different aspects of designs. 

 Knight (1999) proposes at least two approaches to de-

veloping a grammar-based system that produces designs 

meeting specified goals under constraints. A strictly gen-
erative approach incorporates knowledge into grammar 

rules so that all generated designs satisfy the constraints. In 

a generate-and-test approach the grammar is under-

constrained, and the initially generated designs are exam-

ined using an evaluation function for those that satisfy the 

constraints. Naturally, there need not be a hard schism be-

tween strictly generative and generate-and-test methods – 

even if all hard constraints can be encoded in the grammar, 

there will likely still be preferences that are best captured 

in an evaluation function. In general, the space of gram-

mar-based design methods extends with constraint-based 

and optimization methods, and hybrids of them. 

 We propose to adapt grammar-based approaches to C2C 

design by (a) defining grammars for languages of product 

family designs rather than languages of individual product 

designs, (b) defining constraints and preference functions 

for ranking product family designs by their amenability to 

C2C principles (manufacture, use, disassembly and reuse), 

and (c) taking steps through both first-principle analysis 

and machine learning techniques towards strong(er) gram-

mars with derivations to strings that satisfy many of the 

hard constraints and perhaps even some preferences. 

Grammars for Product Design 
We initially make some important simplifying assump-

tions. Foremost, we assume that a product is only repre-

sented by its material components. Each terminal symbol 
represents ‘one unit’ of material, so the string ‘aabbbc’ rep-

resents a product with two units of material ‘a’, three units 

of ‘b’, and one of ‘c’. With reference to Figure 1, this as-

sumption would translate to replacing each label (e.g., 

‘Product A’) by a string (e.g., ‘aabbbc’).  
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 Continuing, we assume that each non-terminal symbol 

defines a (sub)language of product components -- the start 

symbol of the grammar is a special case, defining the lan-

guage of products. Putting this together with our assump-

tions about the representation of a product, we might de-

fine a grammar for toothbrushes, with start symbol T and 

productions:  

 

T � Handle Head 

Handle � Grip Back 

Head � Base Bristles 

Grip � aa  

Grip � ab  

Grip � aba   

Back � bb  

Back � b     

Base � b 

Bristles � c 

 

One (leftmost) derivation in this grammar is 

 

T � Handle Head            (using T � Handle Head) 

    � Grip Back Head      (using Handle � Grip Back) 

    � aa Back Head          (using Grip � aa) 

    � aa bb Head              (using Back � bb) 

    � aa bb Base Bristles (using Head � Base Bristles) 

    � aa bb b Bristles       (using Base � b) 

    � aa bb b c                 (using Bristles � c) 

 

Note that ‘ababbc’ is derivable, as well as ‘aabbbc’, and 

whether these were regarded as ‘equivalent’ or not would 

be judged by a preference function. 

 The grammar above is context free, but context sensitive 
transitions might also be introduced. For example, if it was 

desirable that the total amount of material derived from 

Back was sensitive to the amount derived from Grip, then 

productions such as  

 

aba Back � aba b 

aa Back � aa bb 

ab Back � ab bb 

 

might be used instead of the context-free Back rules (here, 

we ignore the possible reorganization of a grammar so as 

to eliminate context sensitive rules, resulting in another 

context free grammar).  

 In design grammars generally, there is attention to repre-

senting connections between components in the grammar 

and in derivations. We have thus far not addressed issues 

of component connectedness, but rather viewed a product 

as simply a bag of materials.  

 While these assumptions are very limiting, they still al-

low progress on developing a framework for C2C design 

grammars and methods for their development. For exam-

ple, we imagine a possibility in which standards for prod-

uct grammars are established, and automated means are 

developed that find patterns across these product grammars 

in search of desirable product families. The base grammars 

over which this search occurs can be bootstrapped from ex-

isting products. For each product, a grammar can be in-

duced for which that product is but one string. By analyz-

ing the composite structure of the product, non-terminal 

symbols can be introduced that reflect an aspect of the 

composition, with at least one production enabling even-

tual derivation of the product, but with other productions 

leading to other, functionally equivalent or very similar 

products. These new strings might, for example, be com-

posed of different materials than the ‘seed’ product, where 

functionally and physically related materials would be en-

coded as background knowledge. This strategy would be 

an analytic form of generalization from very limited data 

that was akin to explanation-based learning (DeJong and 

Mooney, 1986; Yoo and Fisher, 1991) and experimental 
goal regression (Porter and Kibler, 1986). 

 Weak Grammars for Product Family Design 
 

A grammar for a language of product families can be con-

structed from other grammars for product languages. For 

example, suppose that we have a grammar that defines a 

set (language, class) of toothbrushes, any one of which is a 

possible product/artifact; the start symbol for this grammar 

is T. Suppose that we also have a grammar defining a lan-

guage of hairbrushes, with start symbol H. A language of a 

product family designs that include hairbrush and tooth-

brush products is defined by  

 

S � [T] [H] 

 

 Assuming that derivations starting with T and H produce 

exactly one (non-NIL) terminal product each, the grammar 

with start symbol S defines a language of product pairs, of 

one toothbrush and one hairbrush per terminal product 

family. Delimiters such as ‘[‘ and ‘]’ may be retained 

throughout a derivation and in the final terminal strings, 

but such boundaries might also be removed/ignored, allow-

ing product sentential forms to be interleaved at various 

points in a product family derivation. 

 Instead of the production above, we could introduce new 

productions 

 

S � SS 

S � [T] 

S � [H] 
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 Together with the productions given in the constituent 

grammars, this new grammar defines a language of product 

families of hairbrushes and toothbrushes with at least one 

toothbrush or at least one hairbrush. It allows product fami-

lies with duplicate products (e.g., 2 instances of a particular 

toothbrush ti and 3 instances of a particular hairbrush hk. 

The language also allows for families that contain only 

toothbrushes or only hairbrushes. 

 In the case of duplicates, the cardinality of differing 

product (duplicates) could be interpreted as a proportional-

ity specification (e.g., in a product family there is a 2/3 the 

number of ti as there are of hk), which could be relevant for 

resource planning and the like. 

 A grammar for a product family defines an infinite set of 

product combinations and duplicate cardinalities. The size 

of the terminal strings (aka families) can be bound to a fi-

nite value, which also bounds the precision of product pro-

portionalities (e.g., bounding family size to 5 or less allows 

2/3 of ti to hk but disallows an expression of 4/5 of ti to hk); 

the size of the language may remain infinite, even with 

such a bound on family size, if any of the constituent 

grammars define infinite languages. 

 Having defined a product family grammar as just de-

scribed, it is obvious that this too could be a constituent 

grammar in a still ‘larger’ grammar and that the product 

family could be a terminal in a still larger and richly orga-

nized language of product collectives. Nonetheless, our ex-

amples, for now, will correspond to the intuition that we 

have grammars for ‘individual products’, from which we 

can construct grammars for product families. In building 

composite grammars from constituent grammars, we as-

sume that terminal and non-terminal symbols that have the 

same names in different constituent grammars are the same 

materials in the case of terminals and represent the same 

component sets in the case of non-terminals. Thus, care 

must be taken to standardize apart symbols across constitu-

ent grammars if such symbols represent different sets. If 
constituent grammars share terminal and non-terminal 
symbols, this presents opportunities for reorganization of 
the composite grammar to more explicitly represent possi-
ble interactions between product derivations within a 
product family. 

 We return to Figure 1b at this point, to illustrate some of 

our assumptions. Figure 1b, without the arcs, and with 

product labels in the boxes replaced by strings of material 

units (e.g., ‘aabbbc’ for Product A, ‘addeeef’ for Product 

B, ‘bcdddee’ for Product D) is an instance of a product 

family. Figure 2 explicitly shows such a structure, which 

would be a string resulting from a derivation in a product 

family grammar. 

 

 

Figure 2: A product family under simplifying assumptions 

Constraints and Preferences 
In the previous two sections we have seen that grammars 

can be constructed for generating and describing both 

product designs and product family designs. That is, 

grammars define a search space. Now we turn our attention 

to constraints and preferences that can be used to evaluate 

product family designs. As such, they can also be used to 

guide the search for product family designs. Hard con-

straints define whether designs are acceptable or not. Pref-

erences define the desirability of some designs over others. 

 We begin discussion of constraints and preferences by 

considering families composed of existing product designs 

only. This is an activity that tenacious recyclers might per-

form; looking as best they can for relationships between 

existing products – grouping products designs together in a 

way that maximizes recycled material with minimal cost 

(e.g., energy). Given our assumptions, each and every 

product design would be represented as a vector of materi-

als and essentially an integer amount of each material. 

Given the huge space of all such represented product de-

signs (e.g., ‘abbbcc’, aaabddee’, bdefff’, …), we could ap-

ply unsupervised learning methods of clustering (Fisher, 

2002) to group product designs, optimizing a tradeoff be-

tween maximizing within-family overlap in material shared 

among product designs and minimizing between-family 

overlap in shared material. Though the product family rep-

resentation we are currently considering does not include 

arcs showing material flow trajectories, the intent of 

maximizing within and minimizing between family mate-

rial overlap can be mapped to maximizing recycled content 

at minimal cost. 
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 So-called constrained clustering (Basu et al, 2008) al-

lows analysts to impose constraints that require that some 

objects (product designs) be grouped together, while re-

quiring that other products not be. For example, analysts 

might know that certain materials are highly toxic in a way 

that cannot be easily controlled during reclamation, there-

fore indicating that such materials be separated entirely 

from product designs that can undergo routine reclamation.  

 Other constraints and preferences that can be used to de-

sign product families as clusters of existing products could 

be based on expected lifetimes of existing products, gener-

ating families in which time spans can be coordinated to 

better insure material replenishment, or methods (and their 

costs) of returning products to be recycled at the end of life 

– we would want to favor products that can be packaged 

together for example, thereby minimizing transportation 

energy. These preferences and constraints all arise from 

externalities, and absent an ability to explicitly represent 

certain constraint and preference knowledge in the gram-

mar, it would remain in the evaluation function. 

 Preferences and constraints that are useful for evaluating 

families of existing products, are also presumably useful 

for guiding the search for entirely new product designs, 

and in our case this search is embedded in a search of 

product families. Moreover and importantly, C2C con-

straints and preferences can be encoded into grammar rules 

or preference functions so as to exclude new designs that 

violate C2C principles. For example, McDonough and 

Braungart (2002) talk about ‘monstrous hybrids’, which 

are products that combine synthetic and organic material to 

the detriment of recycling either effectively. To a large ex-

tent we imagine that monstrous hybrids can be excluded by 

suitable crafting of production rules of constituent product 

grammars.  

 More generally, in addition to preferences and con-

straints applied to a string (i.e., product or product family), 

constraints and preferences can be functions of the string 

derivations, represented as a sequence or as a parse tree. 

While a design-grammar derivation need not map directly 

to manufacturing and/or disassembly steps of the terminal 

product of the derivation, it is a natural bias to consider the 

grammar as constructive. Indeed, if we assume a mapping 

between grammar derivations and steps of manufacturing, 

as well as disassembly procedures, then costs associated 

with these activities can be reflected in an augmented 

grammar. Costs could correspond to represent energy; they 

could also represent materials used as positive costs and 

reclaimed as negative costs, or rewards.  

 For simplicity, we restrict ourselves to the case where 

disassembly is the inverse of construction, and production 

is associated with a forward cost (e.g., representing a con-

structive step) and a backward cost (e.g., representing a 

disassembly step). In general, the backward and forward 

costs may be quite different. Under these assumptions, a 

preference function for designs is informed by the deriva-

tions for those designs, and in particular, costs associated 

with those derivations. Because costs are associated with 

individual productions, sentential forms at intermediate 

points can be evaluated, and used to guide a heuristic 

search through the space of possible derivations. In the 

simplest case, the sum of forward and backward derivation 

costs would be a factor in evaluating proposed product 

families. 

Challenges Ahead 
From constituent grammars for product languages, each 

augmented with production costs, we can define cost aug-

mented grammars for product family languages. But in the 

weak approach outlined in the previous section, the evalua-

tive cost of a product family would necessarily be a simple 

summation over the total forward and backward costs 

across the products in a family. There are substantive chal-

lenges in defining grammars for product family designs 

that more tightly couple the constituent grammars for indi-

vidual product designs. Put another way, we want gram-

mars that capture the rich interactions between product de-

signs suggested by Figure 1b. 

 An approach that we are considering, with machine 

learning at the heart of it, is to transition from weak to 

strong methods. Recall that a weak generate-and-test 

method is one in which the grammar is under-constrained, 

defining a language that is a large superset of the C2C de-

signs. Designs that are found/generated during search are 

subjected to an evaluation function that encodes constraints 

and preferences; constraints eliminate those that violate 

principles of C2C design, and preferences serve to rank the 

surviving strings.  

 In contrast, the strongest methods are those in which a 

grammar derives only strings that satisfy the principles of 

C2C design; these are the strictly generative approaches 

described by Knight (1998). Designs stemming from 

strong methods would likely still be evaluated by prefer-

ences for choosing among C2C designs. 

 As a rule it is much easier to formalize a weak method 

than a strong method for complicated domains. In fact, as 

we have mentioned early on, methods span a continuum 

between the weakest and strongest methods; machine 

learning can traverse this continuum. Thus, a cost-effective 

strategy for obtaining methods at the strong end of the 

spectrum is to first specify a weak method, to include an 

under-constrained grammar plus preferences and con-

straints. The weak grammar defines a search space, and 

machine learning of search control knowledge, which is a 

form of speedup learning (Yoo and Fisher, 1991), trans-

forms the system to the strong method that is more desired.  
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 We believe that this automated learning approach, which 

backs up constraints and preferences into the generator is a 

promising future component in a grammar based frame-

work for C2C design.  
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