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Abstract 
In creative industries such as design and research it is com-
mon to reason about ‘problem-finding’ before tasks or goals 
can be established. Problem-finding may also continue 
throughout the problem-solving process, so achieving goals 
may be an ongoing process of discovery as well as iterative 
improvement and refinement. This paper considers the de-
sign of cognitive systems with complementary processes for 
both problem-finding and problem-solving. We review a 
range of approaches that may complement goal-directed 
reasoning when an artificial system does not or cannot know 
precisely what it is looking for. We argue that there is a 
spectrum of approaches that can be used for reasoning in the 
absence of goals, which make progressively weaker as-
sumptions about the definition and presence goals, and that 
goal-oriented behavior can be an intermediate result of 
problem-finding, rather than as a starting point for problem-
solving. We demonstrate one such approach based on im-
plicit motives and incentives.  

 Introduction   
AI approaches to cognitive systems assume that explicit 
representations of goals, rewards and tasks are integral and 
provide a focus of attention. Such approaches imply that 
we are modeling cognitive systems with the assumption 
that goals are the starting point for reasoning; that reason-
ing cannot start without goals; and that reasoning ends 
when there are no goals. In contrast, this paper character-
izes reasoning so that goals become flexible intermediate 
structures or implied structures, rather than a predefined 
and fixed starting point. By using concepts such as incen-
tive, novelty, difficulty, complexity, curiosity and surprise, 
cognitively inspired AI models that mimic human behavior 
in scenarios such as exploratory research and lifelong, self-
directed learning are possible. The models can be applied 
to any domain in which ‘problem-finding’ needs to occur 
during problem solving. 
 The remainder of this section overviews existing ap-
proaches to goal-oriented behavior in cognitive systems. 
The next section examines a number of complementary 
approaches that may work in conjunction with goal-
directed reasoning, including incentives, motivation, sur-
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prise, novelty and curiosity. We classify these approaches 
along a spectrum that makes progressively weaker assump-
tions about the definition and presence of goals. One ap-
proach at the weaker end of this spectrum is demonstrated 
based on implicit motives and incentives. We show that 
goal-oriented behavior can be understood as an intermedi-
ate result of problem-finding, rather than as a starting point 
for problem solving and that goal-oriented behavior can be 
an emergent property that does not depend on explicit 
definition of domain-specific goals. 

Goal-Oriented Behavior in Cognitive Systems 
Langley et al. (2008) survey cognitive architectures and 
layout nine functional capabilities that are required of a 
cognitive architecture. While each of these are described in 
terms of functionality without reference to specific archi-
tectures or implementations, almost all assume that goals 
and tasks are inherent in the description of the functions. 
This can be seen in the way that Langley et al (2008) de-
scribe four examples of cognitive architectures:  
• Soar: “All tasks in Soar are formulated as attempts to 

achieve goals.”  
• ACT-R: “ACT-R 6 is organized into a set of modules, 

each of which processes a different type of information. 
These include sensory modules for visual processing, 
motor modules for action, an intentional module for 
goals, and a declarative module for long-term declara-
tive knowledge.”  

• ICARUS: “ICARUS … stores two distinct forms of 
knowledge. Concepts describe classes of environmental 
situations in terms of other concepts and percepts, 
whereas skills specify how to achieve goals by decom-
posing them into ordered subgoals.”  

• PRODIGY: “On each cycle, PRODIGY uses its control 
rules to select an operator, binding set, state, or goal, to 
reject them out of hand, or to prefer some over others. In 
the absence of such control knowledge, the architecture 
makes choices at random and pursues depth-first means-
ends search with backtracking” 

 There are multiple models for goals – including goal 
lifecycles and type taxonomies (Braubach et al., 2005) – 
and processes for solving goals – including machine learn-
ing (Nilsson, 1996), planning and rule-based agents (Rus-
sell and Norvig, 1995). Braubach et al., (2005) define a 



lifecycle for goals in which goals transition from new to 
adopted and finished.  
 Braubach et al., (2005) also divide goals into a number 
of types. Approach goals, for example, define states for 
which an agent should minimize the difference between its 
current state and the goal state. In contrast, avoidance goals 
define states for which an agent should maximize the dif-
ference between its current state and the goal state. 
Achievement goals define changes or events that the agent 
should cause to occur. Maintenance goals define properties 
that the agent should hold constant. Other types of goals 
include optimization, test, query and cease goals. 
 Dignum and Conte (1998) state that truly autonomous, 
intelligent agents must be capable of creating new goals as 
well as dropping goals as conditions change. They distin-
guish between abstract, high-level goals and concrete, 
achievable goals. They describe goal formation as a proc-
ess of deriving concrete, achievable goals – such as ‘driv-
ing at the speed limit’ – from high level, abstract goals – 
such as ‘being good’.  
 Foner and Maes (1994) develop an agent model of un-
supervised learning that can self-determine what facts it 
should pay attention to as a way of modeling focus of at-
tention. Foner and Maes (1994) distinguish between goal-
driven and world-driven focus of attention. In their model, 
the agent can determine what sensory data to learn from 
based on strategies that are derived from world-driven 
goals, such as what has changed recently and what new 
data is spatially close. These are domain independent 
strategies that can reduce the number of possible goals an 
agent can pursue at any given time.  
 In general, however, there has been less work on how to 
represent the high-level, abstract goals or world-driven 
goals that cause new, concrete goals to emerge. The con-
cept of an abstract goal is difficult to formalize because of 
the difficulty of representing high-level objectives such as 
“being good” or “being creative”. A number of alternative 
approaches use models of motivation to take the place of 
abstract learning goals (Merrick and Maher, 2009; Singh et 
al., 2005; Kaplan and Oudeyer, 2003; Schmidhuber, 1991). 
Computational models of motivation have also been pro-
posed as an approach to embedding implicit motives in ar-
tificial agents to create agents with different preferences 
for certain kinds of activities (Merrick and Shafi, 2011). In 
a different approach, Barnes and Oudeyer (2010) presented 
a framework for ‘maturationally-constrained self-adaptive 
goal generation’ in which an intrinsic motivation module 
progressively releases constraints on the learning system. 
This permits the learning system to explore progressively 
more widely, through the introduction of new goals.  
 Other work has studied the role of emotion and other 
cognitive moderators in artificial systems (Mariner and 
Laird, 2008). Models of emotion act as modifiers to an 
agent’s goal-oriented behavior or provide abstract goals 
that can be mapped onto concrete goals.  
 This paper proposes that reasoning can include reason-
ing before goals are defined, usually based on the current 
state of the artificial agent and the state of the world. These 

approaches are consistent with current cognitive systems 
because they ultimately lead to goal-oriented behavior, but 
they complement most cognitive systems because they do 
not assume that goals are predefined. The next section de-
scribes models that fall along a spectrum that make pro-
gressively weaker assumptions about the definition and 
presence of goals. 

Models that Complement Goal-Directed Rea-
soning  

In creative domains such as design and research, the ill- 
defined nature of tasks suggests a distinction between 
search and exploration. Maher et al (1996) characterize the 
difference between search and exploration by the input and 
output of these processes as illustrated in Figure 1. A typi-
cal search process generates a solution as its output with a 
well-defined problem (or goal) as its input. However, an 
exploration process derives a problem and the correspond-
ing solution from an ill-defined problem. Maher et al 
(1996) take this idea further to propose a co-evolutionary 
model of reasoning about the problem space and the solu-
tions space in which goals are expressed as requirements 
that change in response to the evolutionary search of the 
solution space. 

 
Figure 1.  Input and output of search and exploration (Maher et 
al. 1996). 

 If we consider the internal state of an agent to include its 
goals, then the absence of goals remains a valid state. In 
many autonomous systems the absence of goals implies 
idle time, but we envisage that a cognitive system can con-
tinue to monitor its environment to discover and pursue 
self-generated goals that extend or improve its knowledge 
base or skill set, during this so-called idle time. This type 
of activity will cause changes in the agent’s internal and 
external environment and create a feedback loop that fos-
ters continuous adaptation. 
 While ultimately the processes in cognitive systems are 
organized with the assumption that behavior is goal- 



 

 
Figure 2: The role of reasoning in the absence of goals in a self-directed cognitive system 

 
Figure 3. Models for reasoning with and without goals. 

 
directed, we propose that self-directed cognitive systems 
include the ability to represent, generate, and reason about 
what Dignum and Conte (1998) call abstract goals. Rather 
than cast this capability in terms of goals and tasks, how-
ever, we identify cognitive models that complement goal-
directed reasoning. This is illustrated in Figure 2, where 
reasoning in the absence of goals can lead to action without 
an explicit representation of goals or it can lead to the defi-
nition of new goals for goal-directed reasoning. 
 In self-directed reasoning, goals are flexible intermedi-
ate structures or implied structures, rather than a prede-
fined and fixed starting point for reasoning. Figure 3 shows 
a spectrum of reasoning starting with the traditional goal-
directed reasoning that includes domain specific goals and 
models for achieving them, through an intermediate type of 
reasoning in which goals are implied and may be emergent 
properties of reasoning, to reasoning without goals in 
which incentives provide guidance for reasoning about ac-

tions. Goals can be flexible, intermediate structures, rather 
than fixed starting points. This will permit continuous 
learning and adaptation to unexpected data or events, or 
changes in needs, beliefs or desires to become an integral 
concept in cognitive architectures. This will also recast 
cognitive systems from strictly goal-directed behaviors to 
include creative and exploratory behaviors. 
 In this section we begin by looking at models that repre-
sent abstract goals as in terms of reward, such as novelty, 
curiosity, interest and surprise. We then consider a set of 
weaker models that represent only a preference for certain 
types of abstract goals and not predefined domain specific 
goals.  We then take the latter of these (implicit motives 
and incentives) and present a model that demonstrates how 
goals can be thought of as an emergent output of motiva-
tion, rather than an explicitly represented starting point for 
reasoning.  



Novelty, Interest and Curiosity 
Novelty, interest and curiosity fall in a class of models that 
allow an agent to respond to and learn from changes in the 
environment. There are many accounts of measuring nov-
elty using computational approaches. Marsland et al. 
(2000) used Stanley’s (1976) model of habituation to im-
plement a real-time novelty detector for mobile robots. 
Like the Kohonen (1993) Novelty Filter, the real-time nov-
elty detector uses a Self-Organising Map (SOM) as the ba-
sis for the detection of novelty. Habituation and recovery 
extends a novelty filter with the ability to forget. 
 Models of interest provide a basis for determining if a 
novel event or state is worth a focus of attention. Curiosity 
is when something of interest can distract the process from 
its current focus of attention. Saunders and Gero (2001) 
drew on the work of Berlyne (1960) and Marsland et al 
(2000) to develop computational models of curiosity and 
interest based on novelty. They used a real-time novelty 
detector to implement novelty. Saunders and Gero (2004) 
model interest using sigmoid functions to represent posi-
tive reward for the discovery of novel stimuli and negative 
reward for the discovery of highly novel stimuli. The re-
sulting computational models of novelty and interest are 
used in a range of applications including curious agents.  
 Merrick and Maher (2009) present models of motivated 
reinforcement learning agents that use novelty and curios-
ity as models of intrinsic motivation. These agents exhibit 
a kind of world-driven (rather than goal-driven) behavior. 
The agents have an experience trajectory Y(t) that models 
all states S(t), changes in states (events) E(t) , actions that 
have been encountered/experienced by the agent: 

Y(t) = S(1), E(1), A(1), S(2), E(2), A(2), … , S(t), E(t), A(t) 
A dynamic motivated reward signal Rm(t) is computed as a 
function of novelty and interest. Their model of interest, 
based on the experience trajectory, is a modified version of 
the Saunders and Gero interest function and is based on the 
Wundt curve shown in Figure 4.  

 
Figure 4 The Wundt curve is the difference between positive and 
negative feedback functions. It peaks at a moderate degree of 
novelty (Merrick and Maher, 2009). 

This curiosity-based reward signal directs the agent to fo-
cus its learning on achieving specific situations at different 
times, but does not have an explicit representation of tasks 
or goals. Other motivation functions studied by Merrick 
and Maher (2009) within this framework include functions 

for competency and combined competency and curiosity. 
Experimental studies of curious agents in dynamic envi-
ronments demonstrated highly adaptive behaviors through 
the ability to learn a high variety of simple and complex 
behaviors (see Merrick and Maher, 2009 for experimental 
results). 

Surprise 
Surprise occurs when an unexpected event occurs. While 
surprise and novelty are similar, something may be novel, 
but necessarily surprising because it is the next expected 
change. Horvitz et al (2005) and Itti and Baldi (2004) have 
developed probabilistic models for finding surprising 
events in data. Ranasinghe and Shen (2008) have devel-
oped a model of surprise for reinforcement learning for de-
velopmental robots. 
 The Horvitz et al (2005) model of surprise is used in 
traffic forecasting. They generated a set of probabilistic 
dependencies among a set of random variables, for exam-
ple linking weather to traffic status. They assume a user 
model that states that when an event occurs that has less 
than 2% probability of occurring, it is marked as surpris-
ing. Surprising events in the past are collected in a case li-
brary of surprises. This provides the data for forecasting 
surprises based on current traffic conditions.The Itti and 
Baldi (2004) model of surprise is developed for observing 
surprising features in image data using a priori and poste-
rior probabilities. Given a user dependent model M of 
some data, there is a P(M) describing the probability distri-
bution. P(M|D) is the probability distribution after the data 
is added, using Bayesian probability. Surprise is modeled 
as the distance d between the prior, P(M), and posterior 
P(M|D) probabilities.  
 The Ranasinghe and Shen (2008) model of surprise is 
used as a reward in a model they call surprise-based learn-
ing for developmental robots. In this model, surprise is 
used to set goals for learning in an unknown environment. 
The world is modeled as a set of rules, where each rule has 
the form: Condition  Action  Predictions. A condition 
is modeled as: Feature   Operator  Value. For exam-
ple, a condition can be feature1 > value1 where “greater 
than” is the operator.  A prediction is modeled as Feature 
 Operator. For example, a prediction can be “feature1 >” 
where it is expected that feature1 will increase after the ac-
tion is performed. The comparison operators provided for 
surprise analysis include operators to detect the presence 
(%) or absence (~) of a feature,  and the change in the size 
of a feature (<, <=, =, >=, >). If an observed feature does 
not match the prediction for the feature, for example, the 
feature was expected to increase and it decreased, then the 
system recognizes surprise and sets that state as a reward 
for learning. 
 The three models provide different approaches to model-
ing surprise based on the needs of the context in which 
they are developed. The Horvitz et al (2005) model deter-
mines that an event in the past is surprising, and then for a 
collection of surprising events is used to predict future sur-
prising events. In the Itti and Baldi (2004) model, the new 



data is assimilated into the probability distribution, so 
something is surprising the first time it is introduced. The 
Ranasinghe and Shen (2008) model does not use probabili-
ties and instead finds the first unexpected feature based on 
predictions of the direction in which the values of features 
will change and sets a reward to learn about that situation.  

Incentives, Motives, and Motivation 
In motivational psychology, incentive is defined as a situ-
ational characteristic associated with possible satisfaction 
of a motive (Heckhausen and Heckhausen, 2008). Incen-
tives can be internal or external. Examples of internal in-
centives that depend on an individual’s experiences include 
the novelty, difficulty or complexity of a situation. Exam-
ples of external incentives include money or other kinds of 
external ‘payoff’. Associations between incentive and mo-
tivation can be learned, but there are also certain associa-
tions between incentives and motivation that have been 
found to be common across individuals. These include the 
associations between: 
• Task difficulty and achievement motivation 
• Risk and power motivation 
• Risk and affiliation motivation 
• Novelty and curiosity  
Suppose we represent a situation encountered by an agent 
at time t as S(t). Then the incentives associated with a situa-
tion can be represented as I(t) = (i1, i2, i3…). Each value in 
represents a different incentive. For example, i1 may de-
scribe the novelty of S(t), i2 may describe the complexity of 
S(t), i3 may describe risk and so on.  
 Internal incentive values such as novelty, difficulty and 
complexity can be computed by an agent while it is reason-
ing about its environment using computational models 
such as novelty-detectors (Marsland et al., 2000) or 
achievement based on error calculations on learned poli-
cies (Merrick and Maher, 2009). This means that the incen-
tives associated with a situation will change based on the 
agent’s experiences. External incentive values are inter-
preted from the current state of the environment S(t). These 
values will change based on changes in the environment. 
Both types of incentive have the possibility of satisfying 
the agent’s motive. 
 Implicit motives are innate preferences for certain kinds 
of incentives. Because different individuals have different 
implicit motives, they will interpret the same situation in-
centives differently. For example, individuals with strong 
achievement motivation favor moderate difficulty. Like-
wise, high curiosity is associated with moderate novelty. 
Individuals with strong power motivation favor high risk. 
In contrast, individuals with strong affiliation motivation 
avoid situations with high risk. We can represent different 
motives M1, M2, M3… as a function of incentive Mm(t) = 
Mm(I(t)). These scalar motivation values Mm(t) can be used in 
isolation, for example as a reward signal in learning, or 
combined. For example, they can be summed to give a re-
sultant motivational tendency based on a complex motive 
profile of multiple motives (Merrick and Shafi, 2011). 

Tres(t) = M1(t) + M2(t) + M3(t) + … 

 The resultant value can then be used by the agent to 
identify the most highly motivating situations and act, 
learn to act or plan to act to achieve those situations. This 
action, learning or planning may involve formation of ex-
plicit concrete goal structures, but this is not strictly neces-
sary. The demonstration in Section 4, for example, uses an 
agent architecture without an explicit goal representation, 
as do self-motivated learning algorithms such as motivated 
reinforcement learning.  
 In summary, incentives and motives are values derived 
from the synergy of the external environment and the in-
ternal state and preferences of the agent that provide a ba-
sis for deciding what to do next. Algorithm 2 is a continu-
ous learning, planning, or action selection algorithm that 
uses a model of incentives and motives to determine what 
to do next.  

Repeat: 
Sense state S(t) 
Compute incentives (internal & external) I(t) = (i1, i2, i3…). 
Compute Mm and Tres(t) = M1 + M2+ … 
If S(t) is highly motivating then  
             Act, learn, plan, create a goal etc to achieve S(t)   
Else 
             Act, learn, plan, create a goal etc to avoid S(t)   
End if 

End  
Algorithm 1. An algorithm for generating action or concrete 
goals for action from implicit motives. 

 Established motive profiles from psychology provide a 
starting point for designing different types of artificial 
agents. For example McClelland (1975) describe a leader-
ship motive profile that combines high achievement and 
power motivation and results in individuals that emerge as 
leaders in a range of situations. Other profiles that have 
been studied include the power profile of high power moti-
vation with low achievement and affiliation motivation. In 
artificial agents, this profile generates a kind of behavior or 
can be used to create abstract goals such as ‘being aggres-
sive’ or being a ‘risk-taker’. We demonstrate four motive 
profiles in the next section and show how they can be used 
to influence action and adaptation in artificial agents, in the 
absence of concrete goals.  

Demo: Agents Playing Mixed-Motive Games 
Mixed-motive games offer a simple representation of cer-
tain kinds of strategic interactions between individuals 
(players). In these games, players choose among a number 
of possible actions. The resulting payoff to each player is 
determined by the actions of both players. The best payoff 
is only obtained if both players act differently. This can be 
thought of as both players acting with different motives 
because the situation (game) itself is identical for both 
players. Mixed motive games provide a good environment 
for experimenting with and comparing alternatives to goal-
directed behaviour, because they define a number of pos-
sible outcomes, but do not predefine goals. Rather, players 
need to dynamically determine which actions to select in a 



changing environment that is dependent on the actions of 
the other player(s).  
 Here we describe the effect of different players’ motive 
profiles in a well known two-player game of ‘Leader’.  The 
Leader game models strategic interactions in which two 
players must decide whether to concede (C) or drive (D) 
with the outcomes being shown in the matrix as numbers. 
The numbers in Table 1 show a comparison of which out-
comes are more desirable, with 4 being the most desirable 
payoff, 3 being the second best etc. The payoffs for Player 
I are shown first, followed by Player II.  
Table 1. The mixed-motive game ‘Leader’. Payoff for each player 
is determined by the actions (C or D) chosen by both players.  

Player II 
  C D 
Player I C 2, 2 3, 4 
 D 4, 3 1, 1 

The abstract game of Leader describes a range of traffic 
and pedestrian interactions (among others). For example, 
suppose there are two cars waiting to cross a narrow 
bridge. The drivers must decide whether to drive (D) or 
concede right of way to the other person (C). If both con-
cede then both will be delayed giving the outcome (2, 2). If 
they both decide to drive then a collision will occur resul-
ting in the worst outcome for both (1, 1). If one decides to 
drive and the other wait, the ‘leader’ will receive a payoff 
of 4, while the other – the ‘follower’ – will be able to drive 
after the leader, receiving a payoff of 3. These concepts of 
leader and follower, and other concepts such as aggres-
sion/power, ‘being good’ and ‘avoiding conflict’ can be 
modelled as motive profiles that can guide the selections of 
actions in this scenario without requiring predefined goals. 
 Before we do this, we will modify the abstract game to 
capture several other related scenarios. Table 2 shows a 
range for payoff values that represent various government 
campaigns on road safety as increasing reward for being 
cautious and conceding right of way. Table 3 shows a 
range of payoff matrices with harsher penalties for colli-
sions (such as higher insurance premiums or fines).  

Table 2 Leader game with higher incentives for cautious driving. 
Player II 

  C D 
Player I C 2,2 (3-3.8), 4 
 D 4, (3-3.8) 1,1 

Table 3 Leader game with higher penalties for collisions. 
Player II 

  C D 
Player I C 2, 2 3, 4 
 D 4, 3 (1-0), (1-0) 

Agents Guided by Incentives and Implicit Motives 
This section describes four agents that use Algorithm 1 
with different motive profiles defined using the equations 

for power, achievement and affiliation motivation pro-
posed by Merrick and Shafi (2011): 
 

 where 

 

 

 
 

 is the resultant motivational tendency;  is the incen-
tive value for a particular outcome. In this paper we use 
normalised payoff directly as incentive. This simplifies the 
definitions of task difficulty and risk associated with 
power, achievement and affiliation based on the assump-
tions that (1) higher payoff is generally associated with 
higher risk in power and affiliation motivation and (2) 
higher payoff is generally associated with higher difficulty 
in achievement motivation. 

 are the turning points of approach com-

ponents for each motive;  are the turning 

points of avoidance for each motive;  are 

gradients of approach;   are the gradients of 

avoidance;  are the relative motivation 
strengths of power, achievement and affiliation within the 
individual agent. The different motive profiles are created 
by setting and randomising the motive parameter values 
within different ranges as shown in Table 4. Agents use 
these parameters to compute the motivation value of each 
possible game outcome, then select the action (C or D) cor-
responding to the most highly motivating outcome. 

Table 4. Motivation ranges for different motive profiles. 
 Motive Profiles 
Param Leader-

ship 
Power Achieve

ment 
Affili-
ation  

 2 1 2 1 
 -0.1 0.2 [0.2, 0.4] 0.2 
 0.2, 0.5 [0.5, 0.7] 0.5 
 1 1 1 2 

 
0.3 0.4 0.3 [0.3, 0.5] 

 
0.1 0.1 0.1 [0, 0.2] 

 2 2 1 1 

 [0.6, 0.8] [0.8, 1.0] 0.9 0.9 

 [0.95, 1.2] [1.1, 1.3] 1.2 1.2 



Results 
Simulations of the agent with the leadership profile playing 
one hundred games from Table 1 against each of the three 
other agents are shown in Figure 5. The results show that 
agents with different motive profiles behave differently, 
indicating that different motive profiles affect the decisions 
they make, implying that the agents have different goals 
even though no explicit goals have been represented in the 
agents. Figure 6 shows that the agent with the leadership 
profile generally elected to drive (D). In contrast, the 
achievement motivated agent tended to wait, leading to a 
successful lead-follow interactions in almost all cases as 
shown in the first bar. In contrast, the more aggressive 
power motivated agent tended to drive more often. This re-
sulted in a high number of collisions as shown in the sec-
ond bar. The affiliation motivated agent also tended to 
drive in all instances, but its motivation was different. The 
affiliation motivated agent is motivated to seek low reward 
and avoid conflict with those who want higher reward. 
Ironically in this kind of situation, affiliation motivation 
results in poor performance (collisions). In motivational 
psychology, this sort of under-performance is considered 
characteristic of individuals with high affiliation motiva-
tion and lower achievement and power motivation (Heck-
hausen and Heckhausen, 2008). 

 
Figure 5. Outcomes of an agent with a leadership profile playing 
100 games against each of three agents with the achievement, 
power and affiliation profiles respectively. 

 Simulations of the agent with the leadership profile play-
ing Table 2 games against each of the three other agents 
are shown in Figure 6. Three Table 2 games with different 
payoff values are played one hundred times against each 
agent. The results show that when the payoff for waiting 
increases (caused by a government campaign on road 
safety for example) the agents adapt their behavior. In ad-
dition, different agents adapt differently. The agent with 
the leadership profile tends to wait more often as the pay-
off to wait increases. In contrast, the power motivated 
agent starts to wait on occasion, but still tends to drive 
most often. Therefore, we can see that with the leader ver-
sus power agent (Figure 7(a)), the successful outcomes are 

proportional to the payoff. The demonstration shows that 
our model of implicit motives permits agents to change 
their implied concrete goals as the environment changes. 
   

 
Figure 6. Outcomes of an agent with a leadership motive profile 
versus agents with strong (a) power (b) achievement (c) affili-
ation motive profiles, in Leader games with varying payoffs. 

Where the power and leadership motivated agents were 
most affected by the ‘government advertising campaign’ 
affiliation motivated were most noticeably affected by the 
change in penalty for collisions as shown in Figure 7. Af-
filiation motivated agents tend to wait more often as the in-
centive for both agents driving decreased. Due to this, the 
number of collisions decreases as the punishment is in-
creased. However, even with the highest penalties applied, 
there are still more collisions overall than with other types 
of agents. This experiment also demonstrates that agents 
with different implicit motives are able to respond to dif-
ferent types of changes, because they have a preference for 
different kinds of incentives. In addition, they did this in 
the absence of information about concrete goals. 

 
Figure 7. Outcomes of leader versus affiliation agent with in-
creased punishment for collisions. 

Summary 
If we consider the Leader game in light of both the litera-
ture and the experimental results, then we see implicit 
goals, both abstract and concrete: abstract goals such as 
“being good”, lead to concrete goals such as “avoiding col-
lisions”; and abstract goals such as “being a leader” lead to 
concrete goals such as “driving first”. The algorithms show 



that we do not need to represent either the concrete goals 
or abstract goals explicitly to achieve this behaviour. Ra-
ther, by representing incentives and different implicit mo-
tives we can model agents with different ‘implied’ abstract 
goals that influence their behaviour in different ways.  
 We summarise the literature and our own results in the 
context of Figures 2 and 3 with a spectrum of approaches 
that provide stronger to weaker representations of goals. 
These approaches complement goal-driven behavior or 
permit action in the absence of goals. 
1. Strong models use domain-specific reward functions in 

learning and represent concrete goals in problem solv-
ing. 

2. Weaker models reason in the absence of domain spe-
cific goals or rewards by calculating abstract goals or 
rewards based on the state of the external environment 
and the agent’s experiences in its environment. These 
systems may or may not record goal structures in their 
internal representation. More importantly, in these sys-
tems, goal-like structures are flexible and intermediate 
states rather than provide the starting point for reason-
ing. 

3. Finally, at the end of the spectrum, models of implicit 
motives can be thought of as reasoning in the absence 
of goals because they model only a preference for cer-
tain kinds of abstract implicit goals, rewards or incen-
tives and not a goal itself. These models can still lead to 
action-selection and a type of emergent goal-directed 
behavior without explicit goal structures in the repre-
sentation.  

 The distinction between (1) and (2) is similar to the Fon-
er and Maes (1994) distinction between goal-driven and 
world-driven attention focus. Category (1) covers models 
that explicitly represent concrete goals, while category (2) 
covers models that explicitly represent abstract goals. In 
contrast, category (3) refers to models that define only a 
preference for certain kinds of abstract goals. In both cate-
gories (2) and (3) concrete goal-directed behavior is an 
emergent property. This emergent goal-driven behavior is 
critical for cognitive systems that can use ‘idle time’ effec-
tively by continuing to monitor their environment to 
discover and pursue self-generated goals that extend or im-
prove their knowledge base or skill set. 
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