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ABSTRACT 
A design for a building or product may be considered 
creative by some person, group, or the general public 
regardless of what others might think. We survey the 
literature on characteristics of creative products, 
particularly of design. We argue that the three 
characteristics of novelty, value, and surprise are essential 
for evaluating creativity in design, although these may be 
augmented with other considerations that are domain 
dependent or based on individual interpretation. We 
propose that measures of distance and Bayesian probability 
can serve in measuring the three features of creativity, and 
that strategies like clustering can serve to create and 
organize the conceptual space against which these features 
are evaluated. There are at least two motivations for 
formalizing the assessment of creativity: to give an 
artificial agent an ability to judge creativity, and to give 
human analysts a uniform means of evaluating creativity in 
designs, whether the design stems from a single human, a 
single artificial agent, or a community of agents, human 
and/or artificial. We illustrate concepts using an example of 
sustainable design, the Bloom laptop.  
Keywords 
evaluating creativity, novelty, value, surprise, sustainable 
design  
 
INTRODUCTION 
Creativity is situated and contextualized: we experience a 
work of art in a specific museum, we learn about a creative 
proof in a mathematics course, we buy a creative product in 
an electronics store. As an area of research, studying 
creative phenomena is a way of finding common patterns 
across many examples and disciplines of creativity. 
Another approach to creativity research is to start with 
generalized models of creativity and find examples that 
show how the generalizations apply in specific situations. 

In this paper, we develop AI models for three 
characteristics of the products of creativity as a way of 
understanding how we recognize creativity and as a starting 
point for evaluating creative designs.  
Models of creativity can focus on either the processes that 
produce creative artifacts or how we evaluate an artifact to 
determine if it is creative from either the perspective of 
human creativity (for example in psychology studies) or 
computational creativity (for example in philosophical 
studies and artificial intelligence studies). The study of 
human creativity tends to focus on the characteristics and 
cognitive behavior of creative people and the environment 
or situations in which creativity is facilitated. The study of 
computational creativity, while inspired by concepts of 
human creativity, is often expressed in the formal language 
of search spaces and algorithms.  
Why do we need a common model for evaluating creativity 
that is independent of the domain of the creative design or 
process that is being creative? Firstly, there is an increasing 
interest in developing computational systems that can 
model creative processes and therefore generate creative 
designs, yet our best example of creative entities are human 
and our only evaluators are humans. In parallel there is 
increasing interest in computational systems that encourage 
and enhance human creativity that make no claims about 
whether the computer is being or could be creative. Thus, 
as part of our arsenal for assessing creativity, we want 
uniform means of comparing designs, be they the products 
of a single human with or without computing tools, a single 
artificial agent, or a community of agents, human and/or 
artificial. 
A related but distinct motivation for our formalizations are 
to take initial steps at imbuing artificial agents with an 
ability to assess creativity for purposes of evaluating their 
own designs, but also so that they can be effective 
collaborators with humans in increasingly sophisticated 
socially intelligent computational systems. 
Generally, we believe that as the boundary between human 
creativity and computer creativity blurs, ways of evaluating 
or recognizing creativity that makes no assumptions about 
whether the creative entity is a person, a computer, a 
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potentially large group of people, or the collective 
intelligence of human and computational entities removes 
any bias associated with individual human creativity.  
Informed by a survey of literature on assessing creativity, 
this paper argues that creativity can be evaluated in terms 
of novelty, value and surprise, which can be adapted and 
applied to the various disciplines and situations in which 
creativity is being studied. Our intent is that this will 
facilitate comparison and progress across domains and 
computational processes. We illustrate and demonstrate the 
concepts using the Bloom laptop (Figure 1), which was 
designed by mechanical engineering students at Stanford 
University and Aalto University [5]. The laptop was 
designed for ease of recycling with design requirements 
such as: minimum number of parts and types of material, 
modular construction and disassembly, ease of 
disassembly, minimum disassembly time.  

 
Figure 1. Bloom Laptop Modular Design (Bohbe et al 
2010) 
 
DESCRIBING CREATIVE PROCESSES AND 
EVALUATING CREATIVITY  
There is a distinction between studying and describing the 
processes that generate potentially creative designs, which 
focus on the cognitive behavior of a creative person or the 
properties of a computational system, and the methods for 
evaluating a potentially creative design.  
A creative design does not arise from a vacuum, and 
furthermore, it is typically evaluated within the context of a 
need or desire that is not fulfilled by existing designs in the 
same class. When researchers describe creative processes 
there is an assumption that there is a space of possibilities. 
Boden [6] calls such a space a “conceptual space” and 
describes these spaces as structured styles of thought. In 
computational systems such a space is called a state space, 
in computational models of design such a space is called a 
design space. How these spaces are changed, or the 
relationship between the set of known artifacts, the space of 
possibilities, and the potentially creative artifact, is the 
basis for describing processes that can generate potentially 
creative artifacts.   
There are many accounts of the processes by which a 
potentially creative product can be produced. Two sources 
described here are: Boden [6] from the philosophical and 
artificial intelligence perspective and Gero [9] from the 
design science perspective. The processes for generating 

potentially creative producta are described generally by 
Boden [6] as: combination, exploration, and transformation 
where each one is described in terms of the way in which 
the conceptual space of known designs provides a basis for 
producing a creative design and how the conceptual space 
changes as a result of the creative design.  
Computational processes for generating potentially creative 
designs are articulated by Gero [9] as combination, 
transformation, analogy, emergence, and first principles. 
These processes can become operators for generating 
artifacts that explore, expand or transform the relevant state 
space. Maher [15] characterizes different computational 
processes in terms of transformation and exploration and 
describes a zone of creativity in order to evaluate their 
potential for generating creative designs. 
While these processes provide insight into the nature of 
creativity and provide a basis for computational creativity, 
they have little to say about how we recognize or evaluate 
creativity in the resulting product of the process. As we 
move towards computational systems that enhance or 
contribute to human creativity, the articulation of process 
models for generating creative artifacts does not provide an 
evaluation of the product of the process and are insufficient 
for evaluating if a potentially creative artifact is creative. 
Systems that generate potentially creative artifacts require a 
model of evaluation that is independent of the process by 
which the artifact was generated.  
A common claim for computational creativity is based on 
the distinction between P-creativity (psychological) and H-
creativity (historical) [6], where computers can be P-
creative. P-creativity is a creative artifact that is novel for 
the individual or computer that produced it and H-creativity 
is novel historically. When we consider the evaluation of 
potentially creative artifacts that are generated by humans, 
computers, or combinations of humans and computers, it 
will be increasingly difficult to determine the boundary of 
the state space that is the basis for P-creativity. The 
evaluation model in this paper assumes there is a relevant 
state space of artifacts associated with the potentially 
creative artifact. This state space is not bounded before the 
process for producing the potentially creative artifact 
begins and can include an initially fixed state space 
representation, personal knowledge, historical knowledge, 
or the knowledge available to a network of humans and 
computers. In this paper, the evaluation models are 
independent of the distinction between P-creativity and H-
creativity. 
Csikszentmihalyi  and Wolfe [8] define creativity as a an 
idea or product that is original, valued, and implemented. 
Most definitions of creativity, including definitions in the 
dictionary, will include novelty as an essential part of the 
definition. A definition of creativity may focus on novelty 
as the primary criterion and claim that novelty is expressed 
as a new description, new value, or a surprising feature of a 
creative product. Alternatively, many definitions will state 
that value is the umbrella criteria and novelty, quality, 



surprise, typicality, and others are ways in which we 
characterize value for creative artifacts. Villalba [25] 
provides an overview of creativity research and its 
measurements. Runco [20] presents several authors that 
define creativity as involving the creation of something 
new and useful [3, 4, 23, 17, 2]. Boden [6] claims that 
novelty and value are the essential criteria and that other 
aspects, such as surprise, are kinds of novelty or value. 
Wiggins [26] often uses value to indicate all valuable 
aspects of a creative product, yet provides definitions for 
novelty and value as different features that are relevant to 
creativity. Oman and Tumer [18] combine novelty and 
quality to evaluate individual ideas in engineering design as 
a relative measure of creativity. Shah, Smith, and Vargas-
Hernandez [22] associate creative design with ideation and 
develop metrics for novelty, variety, quality, and quantity 
of ideas.  
Amabile [1] says it most clearly when she summarizes the 
social psychology literature on the assessment of creativity: 
While most definitions of creativity refer to novelty, 
appropriateness, and surprise, current creativity tests or 
assessment techniques are not closely linked to these 
criteria. She further argues that “There is no clear, explicit 
statement of the criteria that conceptually underlie the 
assessment procedures.” In response to an inability to 
establish and define criteria for evaluating creativity that is 
acceptable to all domains, Amabile [1] introduces a 
Consensual Assessment Technique (CAT) in which 
creativity is assessed by a group of judges that are 
knowledgeable of the field. Within this technique, Amabile 
defines a cluster of features associated with creativity for 
the judges to rate that are specific to the artistic or verbal 
artifact being assessed (for example, in an artwork: 
creativity, novel idea, variations in shapes, complexity, 
detail). The CAT does not assist in developing a common 
set of metrics for evaluating creativity but instead provides 
a common technique for people to judge creativity. 
 
NOVELTY, VALUE, SURPRISE AS CHARACTERISTICS 
OF CREATIVE PRODUCTS 
Creativity in a space of possible and existing designs is a 
relative measure. For something to be creative, it is 
compared to other artifacts in a class of products or 
processes. The characteristics of creativity that we describe 
here are defined as a comparison between a potentially 
creative design and other designs. While others have 
grouped novelty and value as a single characteristics of 
creativity, we define novelty and value as two different 
characteristics of a creative artifact: novelty is based on a 
comparison of a description of the potentially creative 
design to other designs and value is a derivative feature that 
requires an interpretation of the description of the 
potentially creative design. That is, novelty considers the 
descriptive attributes and value considers the performance 
attributes. Surprise is a third characteristic of a creative 
design because it is possible for something to be novel and 

valuable, but not be surprising. Surprise is a feature that is 
based on expectations and so is based on recognizing 
patterns or sequences in the space of designs. Surprise is a 
function of the attributes of the potentially creative artifact 
in comparison to other artifacts (like novelty), but also 
depends on a projection or expected value that lies outside 
the description of the artifacts (like value). 
Novelty is a measure of how different the artifact is from 
known artifacts in its class. Generally, artifacts are put in a 
class according to their label or function, for example the 
Bloom laptop belongs to the class of laptop designs. 
Members of a class are similar across their attributes and 
vary according to the values of the attributes. Novelty is 
recognized when a new attribute is encountered in a 
potentially creative design, a previously unknown value for 
an attribute is added, or a sufficiently different combination 
of attributes is encountered. For example, the Bloom laptop 
introduced a new way to describe the body of the laptop. 
Where the Mac laptops have a unibody, the Bloom laptop 
has a body that is made of easily separable parts. A model 
for measuring novelty can be based on the distance of the 
potentially creative artifact from other artifacts in the same 
conceptual space, measuring how the design is similar but 
different. 
Value is a measure of how the potentially creative design 
compares to other designs in its class in utility, 
performance, or attractiveness. Often this is a measure of 
how the design is valued by the domain experts or users 
and is either a weighted sum of performance attributes or is 
a reflection of the popularity of the artifact. To distinguish 
this from novelty, value is a measure of the design’s 
performance rather than a measure of how the design’s 
description differs from other designs in its class. When an 
artifact is described by a set of attributes, it is possible that 
some of the attributes are performance attributes, and so 
some of the information for measuring value may be 
embedded in the description. A predefined function of 
weighted value attributes is not appropriate because often a 
creative design can change the value system by introducing 
a performance or function that did not exist in the class of 
known designs before the creative design. For example, the 
Bloom laptop introduced a new performance measure for 
laptop designs: time to disassemble. Previously, laptops 
described their performance on environmental issues in 
terms of the type of materials used and their energy 
efficiency, not the amount if time to disassemble. A model 
for determining the value of a potentially creative design 
can adapt to new performance features if is based on the 
distance in performance criteria space from other artifacts, 
again, a measure that represents similar but different. 
Surprise has to do with the recent past and how we develop 
expectations for the next new artifact in a class. This is 
distinguished from novelty because it is based on 
recognizing the expected next difference. The amount of 
difference is not relevant as it is in the novelty metric, the 
variation from expectation is relevant. One way to think 



about measuring surprise is to characterize the existing 
designs in the design space as a probability distribution and 
determine the probability of the collection of attributes of 
the new design. The Bloom laptop introduced new 
description and performance attributes that were not 
considered design features in previous laptops. We have 
anecdotal evidence that some of the features were 
surprising, such as the importance of a removable 
keyboard.  
 
MEASURING NOVELTY, VALUE, AND SURPRISE 
An assumption is made that a design can be described as a 
set of attribute-value pairs. For example, the conceptual 
space for the Bloom laptop design is the space of laptop or 
notebook computers. While the conceptual space need not 
be predefined or bounded, a list of attribute-value pairs that 
characterize this class of designs include technical 
specifications and performance features. Table 1 shows the 
attribute-value pairs that are used to describe the Apple 
Macbook, Macbook Air, and Macbook Pro designs. The 
last column in Table 1 shows the attribute values for the 
Bloom laptop design. Since the Bloom laptop is at the 
prototype stage, we have only included values for the 
attributes that are available for the prototype. 
A design may have a structured description as attribute-
value pairs, but may also be described as images, 
unstructured text, 3D models, etc. The use of attribute-
value pairs as the basis for evaluation is exemplary, but not 
limiting. There are many fields in which the creative design 
cannot be described as attribute-value pairs or decomposed 
into discrete parts. The clustering algorithms described 
below can be reformulated for other ways of representing 
or describing designs. 
A formalization of creativity starts with a space of 
possibilities and an artifact within that space that is the 
product of creativity. If the space of possibilities is a 
universal space, U, then there is a subset of that space, C, 
which describes a class of artifacts that characterizes the 
designs in that class. A subset of the class of artifacts, A, 
includes the known set of designs.  

A = {a1, a2, …, an} . (1) 

For the purposes of describing the evaluation metric, ai is a 
new and potentially creative artifact.  
The evaluation, E, is a function of ai. 

E(ai) = f(N(ai), V(ai), S(ai)). (2) 

where  
ai is creative if E(ai) > 0 
N, V, and S are functions that return a value >= 0 
N is a measure of the novelty of ai 
V is a measure of the value of ai 
S is a measure of surprise of ai 

 
A principle for recognizing when a potentially creative 
design is creative is determining when the artifact is similar 
but different. In order for the artifact to be recognized and 
associated with a class of artifacts, it first must be similar to 
other artifacts. Once the similarity is established, the 
artifact is creative if it is different. We model “similar but 
different” in an artifact space using incremental and 
adaptive conceptual clustering so that new artifacts change 
the conceptual space over time rather than using a fixed 
measure of similarity. The distance function determines 
how far the potentially creative artifact is from the centroid 
of the nearest cluster of artifacts in the conceptual space. 
This allows us to treat the distance as a measure of the 
potentially creative artifact as similar (closest centroid) but 
different (distance from the center).  
Evaluating novelty: N  
There are many accounts of measuring novelty using 
computational approaches. Marsland et al. [16] used 
Stanley’s model of habituation [20] to implement a real-
time novelty detector for mobile robots. Like the Kohonen 
Novelty Filter [12], the real-time novelty detector uses a 
Self-Organising Map (SOM) as the basis for the detection 
of novelty. Habituation and recovery extends a novelty 
filter with the ability to forget. This allows novel artifacts 
that have been seen in the past to be considered again as 
potentially creative using a new value system.  
Saunders and Gero [17] drew on the work of Berlyne [2] 
and Marsland et al [12] to develop computational models of 
curiosity and interest based on novelty. They used a real-
time novelty detector to implement novelty. However, they 
were also looking for a way to measure interest, where 
novelty is not the only determinant of interest. Saunders 
and Gero [21] model interest using sigmoid functions to 
represent positive reward for the discovery of novel stimuli 
and negative reward for the discovery of highly novel 
stimuli. The resulting computational models of novelty and 
interest are used in a range of applications including 
curious agents. The use of a sigmoid function to provide 
negative reward for highly novel artifacts may be relevant 
as a computational model for novelty that can recognize 
when an artifact is too different from the known artifacts in 
the class to be considered creative. 
We propose a model for measuring the novelty of a 
potentially creative artifact as a measure of the distance, d, 
between the centroid of the nearest cluster of the sets of 
description attributes of other artifacts in the space and the 
potentially creative artifact. For the laptop design example, 
the description space is defined by the technical 
specifications of a similar set of designs. In Table 1 we list 
the technical specifications of Apple Mac notebooks. This 
set of designs can be expanded to include other laptop 
designs: Toshiba, Sony, etc. We have only shown the 
Apple notebooks products because they demonstrate the 
nearest cluster of designs in the conceptual space. The 
Bloom laptop design is similar across all description 



attributes except the description of the body, the keyboard, 
and the touchpad. The Bloom laptop design has a modular 
body and removable keyboard and touchpad. 
Evaluating Value: V  
The value of a potentially creative artifact is a social 
phenomenon and determined by the “gatekeepers” as 
described by Csikszentmihalyi [7]. The value of any 
artifact is judged by criteria that are established by the 
requirements and performance attributes associated with 
the class of artifacts. Typically, value is determined using a 
weighted sum of the values of all requirements and 
performance attributes. Since a creative artifact can change 
our value systems, a potentially creative artifact can change 
the performance attributes for a conceptual space. 
Therefore, a predefined weighted sum function for 
determining the value of a potentially creative artifact is 
insufficient.  
We propose a model for measuring the value of a 
potentially creative artifact using the same “similar but 
different” principle, that is, the value needs to be similar to 
others in its class, but may also be different by introducing 
new performance features or new types of values. 
Therefore, we measure value in the space of performance 
attributes of existing artifacts. The performance attributes 
are derived from the description attributes and/or represent 
social values of existing artifacts.  
For measuring the value of a potentially creative artifact, 
we characterize the artifacts in the conceptual space in 
terms or performance attributes, and allow the potentially 
creative artifact to introduce new performance criteria. In 
this way, a distance measure to the nearest cluster of 
artifacts in the performance space characterizes the 
potentially creative artifact as similar but different. More 
specifically, value is a measure of the distance between the 
nearest centroid of the sets of performance attributes of the 
other artifacts in the space and the potentially creative 
artifact. 
For the laptop design example, the Bloom design 
introduces a new performance attribute: disassembly time. 
The other performance attributes are similar to the Mac 
products, so this design is similar but different in value. 
Evaluating Surprise: S 
An artifact, ai, is considered surprising when we recognize a 
pattern in recent artifacts, and the potentially creative 
artifact does not follow the expected next artifact in the 
pattern.  We can think of evaluating novelty and value as a 
slice in time, where the current time slice includes the 
attributes and values seen up until now. When a new 
artifact is introduced, that slice in time is updated, new 
attributes and/or values may be added, and new clusters of 
artifacts are formed. Surprise is recognized when we 
consider multiple slices of time. This is illustrated in Figure 
2, showing how A1 is surprising because it departs from 
expectations in the novelty and value space.  

 
Figure 2. Evaluating surprise across time slices. 
Horvitz et al [10] develop a model of surprise for traffic 
forecasting. The data used in this model was collected over 
2 years and comprises traffic status in sensed traffic cells in 
Seattle, incident report data, contextual data such as 
holidays and weather.  They generated a set of probabilistic 
dependencies among a set of random variables, for example 
linking weather to traffic status. When modeling surprise, 
they assume a user model that states that when an event 
occurs that has less than 2% probability of occurring, it is 
marked as surprising. They use a marignal model of the 
data, grouping incidents into 15 minute intervals. 
Surprising events in the past are collected in a case library 
of surprises. This provides the data for forecasting surprises 
based on current traffic conditions. 
Itti and Baldi [11] describe a model of surprise for 
observing surprising features in image data using a priori 
and posterior probabilities. Given a user dependent model 
M of some data, there is a P(M) describing the probability 
distribution. P(M|D) is the probability distribution after the 
data is added, using Bayesian probability. Surprise is 
modeled as the distance d between the prior, P(M), and 
posterior P(M|D) probabilities.  
Ranasinghe and Shen [19] develop a model of surprise as 
an integral part of surprise-based learning for 
developmental robots. In this model, surprise is used to set 
goals for learning in an unknown environment. The world 
is modeled as a set of rules, where each rule has the form: 
Condition  Action  Predictions 
A condition is modeled as: 
Feature   Operator  Value 
For example, a condition can be feature1 > value1 where 
“greater than” is the operator. 
A prediction is modeled as  
Feature  Operator 
For example, a prediction can be “feature1 >” where it is 
expected that feature1 will increase after the action is 
performed. The comparison operators provided for surprise 
analysis include operators to detect the presence (%) or 
absence (~) of a feature,  and the change in the size of a 



feature (<, <=, =, >=, >). If an observed feature does not 
match the prediction for the feature, for example, the 
feature was expected to increase and it decreased, then the 
system recognizes surprise. 
The three models provide different approaches to modeling 
surprise based on the needs of the context in which they are 
developed. The Horvitz et al model [10] determines that an 
event in the past is surprising, and then it is a model for 
future surprising events. In the Itti and Baldi model [11], 
the new data is assimilated into the probability distribution, 
so something is surprising the first time it is introduced. 
The Ranasinghe and Shen model [19] do not use 
probabilities and instead find the first unexpected feature 
based on predictions of the direction in which the value of 
features will change.   
For the laptop design example, the Bloom design 
introduces unexpected descriptions of two attributes, 
highlighted in Table 1. The body is modular when the trend 
in laptop design has been unibody. The keyboard and 
touchpad are removable when the trend has been fixed. 
Additionally, the Bloom design introduces two new 
performance features. In the Ranasinghe and Shen model of 
surprise this would be represented using the % (presence) 
operator to notice a feature that was not expected. The 
disassembly time is 2 min when that feature is not included 
in other laptop design descriptions (the Bloom team 
disassembled a several laptops and say the average time is 
45 min). The removable keyboard, illustrated in Figure 3, 
was an emergent performance feature recognized by 
potential users as a valuable feature during the evaluation 
of the prototype. The design team included the removable 
keyboard to satisfy the modular design requirements and 
therefore it is part of the technical specifications, as well as 
a performance feature. 

 
Figure 3. Removable keyboard in Bloom design became a 
performance attribute (Bohbe 2010) 
 
COMBINING NOVELTY, VALUE, and SURPRISE 
Combining novelty, value, and surprise is customized to an 
individual or group by assigning different weights to each 
of the characteristics. Figure 4 shows how the 
characteristics of creativity form a three-dimensional space. 
Artifacts in this space, including existing designs and a 
potentially creative design, can be compared visually by 

finding a surface that forms a subspace for potential 
creativity. This approach to combining novelty, value and 
surprise allows us to connect the formal models with the 
bias that different individuals or domains may have on 
evaluating creativity. For example, while the value of a 
potentially creative design may not be significantly 
different to existing designs, the effect of surprise may 
increase an individual’s perception of the creativity of the 
artifact.  

 
Figure 4. Combining Novelty, Value and Surprise 

 
NEXT STEPS: IMPLEMENTING THE EVALUATION 
METRIC  
In order to implement the evaluation as a computational 
system, we start with conceptual clustering to structure the 
design space for measuring novelty and value. When 
structuring the space for measuring novelty, we include 
descriptive attributes of existing designs. When structuring 
the space for measuring value, we include performance 
attributes of existing designs. Conceptual clustering allows 
us to characterize the designs in terms of their proximity to 
other designs by automatically grouping the designs into 
clusters. Once we have clusters, we can reason about 
similarities and differences.   
Different clustering algorithms make different assumptions 
about the structure of the design space and for measuring 
the distance from the potentially creative design to a group 
or cluster of existing designs. The choice of a clustering 
algorithm depends on the characteristics of the design 
space, such as number of designs in the space, the number 
of attributes to describe the design, the density of different 
regions of the space. We describe two approaches to 
clustering to provide a sense of how the clustering can be 
implemented: K-means clustering (the algorithm was first 
published by Lloyd [13]) and Self-Organizing Maps (SOM) 
[12]. The distance measure for each approach to clustering 
is also defined. 
K-means clustering uses a set of centroids to represent 
clusters of input data, or in our case, clusters of existing 
designs. k-means clustering partitions n artifacts, {a1, a2, 
…, an}, where each artifact is a d-dimensional vector of 



attribute-value pairs, into K sets, where k<n and S={S1, S2, 
…, Sk} such that the within-cluster sum of squares in 
minimized: 

.

 

 

(3) 

When K-means clustering is used to determine the distance 
of a potentially creative design, the update function is used 
to determine how far the new design is from the centroid of 
the most similar cluster. The most similar cluster is selected 
as the centroid K(t) with the minimum distance d to the 
potentially creative design where d is calculated using the 
K-means distance function: 

. 

(4) 

Alternatively, self-organizing maps (SOMs) provide a way 
to take an n-dimensional space and map it onto a 2-
dimensional space. This simplifies the measurement of 
distance between 2 points in the space. SOMs comprise a 
number of neurons that represent clusters of input data, in 
our case clusters of artifacts in class C. The SOM neurons 
represent the current set of artifacts, A, in class C. The 
initial condition is a single neuron, and the update function 
adds a new neuron to the map. The SOM update function 
progressively modifies each neuron K to model a cluster of 
artifacts that are relevant to the most recently added 
artifact, but also influenced by past observations or events. 
When a potentially creative design is presented to the 
SOM, each neuron is updated by adding randomly 
initialized variables kL with any attributes that occur in ai 
but not in K. The most similar artifact model is then further 
updated by selecting the neuron K(t) with the minimum 
distance d to the input stimulus where d is calculated using 
the SOM distance function: 

d(ai) =  . 
(5) 

Similar to the d calculated in the update function for k-
means clustering, the d calculated using the SOM distance 
function is the basis for determining the distance to the 
nearest cluster of artifacts. 
In addition to using clustering algorithms to structure the 
design space, we also use Bayesian probability to 
characterize the design space in terms of a probability 
distribution. Prior to the introduction of the potentially 
creative design, we have a set of known designs in a design 
space. We can express the prior probability of a design, D, 
in this space as P(D). Using Bayes Theorem, we can 
calculate the likelihood of the new design, H, as P(H|D). If 
the probability is less than a specified threshold, then we 
can say that the new design is surprising.  

Our next steps are to use the data in Table 1 as a starting 
point for a set of existing designs in a design space of 
laptop designs. We have only shown Apple laptops to 
illustrate the attribute-value pairs of a cluster of designs 
that is similar to the Bloom laptop design. We will augment 
this list with other laptop design specifications. Using the 
clustering algorithms and probability distributions, we can 
plot the Bloom laptop design in the 3-dimensional space 
shown in Figure 4. We can compare the Bloom laptop to 
other designs in the space to visualize the relative 
creativity.  We can also place the Bloom laptop design in 
the 3-dimensonal space with different weights for each of 
the three evaluation criteria: novelty, value, and surprise to 
visualize the relative creativity with different biases and 
preferences.  
 
CONCLUSIONS  
This paper argues for an approach to evaluating creative 
designs that is independent of the design discipline and of 
the source of creativity. Our approach uses AI models that 
operate in the conceptual space of the design discipline, 
thereby contextualizing the evaluation and providing a 
relative measure of creativity rather than a binary 
judgment. Formalizing the essential criteria for evaluating 
creativity allows us to compare the many different 
approaches to developing computational systems that are 
themselves creative as well as computational systems that 
enhance human creativity. With such a metric, we have a 
common ground for evaluating creativity in human, 
computer, and collectively intelligent systems. 
The three essential criteria for evaluating creativity are 
novelty, value and surprise. Novelty is typically associated 
with creativity and is not hard to argue as an essential 
characteristic of a creative artifact. Most agree that novelty 
is not a sufficient condition for creativity and therefore 
adjectives are applied to clarify what kind of novelty is 
associated with creativity. This paper formalizes novelty as 
a measure of distance from a cluster of similar, known 
artifacts. Value is a characteristic of creativity that reflects 
our individual or social recognition that a highly novel, 
random act or result is not sufficient for us to judge 
something as being creative. The creative artifact must 
satisfy domain specific performance criteria and possibly 
extend our understanding in a specific field, change our 
value system, or enhance our lives in some way. Measuring 
value is also based on a distance metric, showing how the 
value of a creative design is similar but different from the 
value of clusters of existing designs.  Surprise is an aspect 
of creativity that we recognize when we say that something 
is creative because it does not meet our expectations for the 
next design in its class. Surprise is measured using 
probability functions that can identify when one or a set of 
features is not expected, or by prediction rules that can 
identify when a specific feature was not predicted.  
The contribution of this paper is the articulation of three 
characteristics of creativity that can be used as a basis for 
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evaluating a potentially creative design. The paper shows 
how a common metric is derived from the various 
definitions and metrics developed in different disciplines. 
The elements of the metric are not new, but the 
combination of these three characteristics is presented as a 
common model for evaluating creativity. The metrics are 
developed further using various AI techniques that can be 
adapted and applied to different contexts and conceptual 
spaces as a computational approach to evaluating creativity 
or as a guide for human judgment of creativity.  
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Table 1. Laptop Design Technical Specifications and Performance Features 

Technical specifications 
 MacBook 11-inch 

MacBook Air 
13-inch 

MacBook Air 
13-inch 

MacBook Pro 
15-inch 

MacBook Pro 
17-inch 

MacBook Pro 
Bloom  

Body Polycarbonate 
unibody 

Precision 
aluminum 

unibody 

Precision 
aluminum 

unibody 

Precision 
aluminum 

unibody 

Precision 
aluminum 

unibody 

Precision 
aluminum 

unibody 

Modular 
components 

Processor 2.4GHz Intel 
Core 2 Duo 

Up to 1.6GHz 
Intel Core 2 Duo 

Up to 
2.13GHz Intel 

Core 2 Duo 

Up to 2.7GHz 
dual-core Intel 

Core i7 processor 

Up to 2.3GHz 
quad-core Intel 

Core i7 
processor 

Up to 2.3GHz 
quad-core Intel 

Core i7 
processor 

2.4GHz Intel 
Core 2 Duo 

Height 1.08 inch 0.11 to 0.68 inch 
thin 

0.11 to 0.68 
inch thin 

0.95 inches 0.95 inches 0.95 inches 1.08 inch 

Display 13.3-inch 
LED-backlit 

11.6-inch LED-
backlit 

13.3-inch 
LED-backlit 

13.3-inch LED-
backlit 

15.4-inch LED-
backlit 

17-inch LED-
backlit 

13.3-inch LED-
backlit 

Trackpad Multi-Touch 
trackpad 

Multi-Touch 
trackpad 

Multi-Touch 
trackpad 

Multi-Touch 
trackpad 

Multi-Touch 
trackpad 

Multi-Touch 
trackpad 

Removable 
Multi-Touch 

trackpad  
Processor 2.4GHz Intel 

Core 2 Duo 
processor 

1.4GHz or 
1.6GHz Intel 

Core 2 Duo 
processor 

1.86GHz or 
2.13GHz Intel 

Core 2 Duo 

2.3GHz dual-core 
Intel Core i5 or 

2.7GHz dual-core 
Intel Core i7 

processor 

Up to 2.3GHz 
quad-core Intel 

Core i7 
processor 

Up to 2.3GHz 
quad-core Intel 

Core i7 
processor 

2.4GHz Intel 
Core 2 Duo 

processor 

Memory 2GB or 4GB 
memory 

2GB or 4GB 
memory 

2GB or 4GB 
memory 

4GB or 8GB 
memory 

4GB or 8GB 
memory 

4GB or 8GB 
memory 

2GB or 4GB 
memory 

Storage Up to 500GB 
5400-rpm 
hard drive 

Up to 128GB 
flash storage 

Up to 256GB 
flash storage 

Up to 500GB 
5400-rpm hard 

drive  

Up to 750GB 
5400-rpm hard 

drive  

Up to 500GB 
7200-rpm hard 

drive 

256MB of 
DDR3 

SDRAM 
Graphics NVIDIA 

GeForce 
320M 

graphics 
processor 

NVIDIA 
GeForce 320M 

graphics 
processor 

NVIDIA 
GeForce 

320M 
graphics 

processor 

Intel HD Graphics 
3000 

Intel HD 
Graphics 3000  

Intel HD 
Graphics 3000 

NVIDIA 
GeForce 320M 

graphics 
processor 

Display 13.3-inch 
LED-backlit 

11.6-inch LED-
backlit 

13.3-inch 
LED-backlit 

13.3-inch LED-
backlit 

15.4-inch LED-
backlit 

17-inch LED-
backlit 

13.3-inch LED-
backlit 

Resolution 1280 by 800 
pixels 

1366 by 768 
pixels 

1440 by 900 
pixels 

1280 by 800 
pixels 

1440 by 900 
pixels 

1920 by 1200 
pixels 

1280 by 800 
pixels 

USB ports Two USB 2.0 
ports 

Two USB 2.0 
ports 

Two USB 2.0 
ports 

Two USB 2.0 
ports 

Two USB 2.0 
ports 

Three USB 2.0 
ports 

Two USB 2.0 
ports 

Camera iSight camera FaceTime 
camera 

FaceTime 
camera 

FaceTime HD 
camera 

FaceTime HD 
camera 

FaceTime HD 
camera 

iSight camera 

Keyboard Full-size 
keyboard 

Full-size 
keyboard 

Full-size 
keyboard 

Full-size, backlit 
keyboard 

Full-size, backlit 
keyboard 

Full-size, 
backlit 

keyboard 

Removable 
full-size 

keyboard 
        

Performance features 
 MacBook 11-inch 

MacBook Air 
13-inch 

MacBook Air 
13-inch 

MacBook Pro 
15-inch 

MacBook Pro 
17-inch 

MacBook Pro 
Bloom Laptop 

Design 
Disassembly 

time 
      2 min 

Removable 
keyboard 

      Yes 

Price Just $999 From $999 From $1299 From $1199 From $1799 From $2499 From $1000 



Weight 4.7 lbs 2.3 lbs 2.9 lbs 4.5 lbs 5.6 lbs 6.6 lbs 4.7 lbs 
Battery life 7 hours 5 hours 7 hours 7 hours 7 hours 7 hours 7 hours 
Recyclable 
Materials 

Recyclable 
polycarbonate 
enclosure 

Highly 
recyclable 
aluminum and 
glass enclosure 

Highly 
recyclable 
aluminum and 
glass 
enclosure 

Highly recyclable 
aluminum and 
glass enclosure 

Highly 
recyclable 
aluminum and 
glass enclosure 

Highly 
recyclable 
aluminum and 
glass enclosure 

Highly 
recyclable 
plastic and 

glass enclosure  

Non-toxic 
materials 

Mercury-free 
LED-backlit 
display 

Mercury-free 
LED-backlit 
display 

Mercury-free 
LED-backlit 
display 

Mercury-free 
LED-backlit 
display 

Mercury-free 
LED-backlit 
display 

Mercury-free 
LED-backlit 
display 

Mercury-free 
LED-backlit 

display 
 Arsenic-free 

display glass 
Arsenic-free 
display glass 

Arsenic-free 
display glass 

Arsenic-free 
display glass 

Arsenic-free 
display glass 

Arsenic-free 
display glass 

Arsenic-free 
display glass 

 BFR-free BFR-free BFR-free BFR-free BFR-free BFR-free BFR-free 
 PVC-free6 PVC-free3 PVC-free3 PVC-free3 PVC-free3 PVC-free3 PVC-free6 

Energy 
efficiency 

Meets 
ENERGY 
STAR 
Version 5.0 
requirements 

Meets ENERGY 
STAR Version 
5.2 requirements 

Meets 
ENERGY 
STAR 
Version 5.2 
requirements 

Meets ENERGY 
STAR Version 
5.2 requirements 

Meets ENERGY 
STAR Version 
5.2 requirements 

Meets 
ENERGY 
STAR Version 
5.2 
requirements 

Meets 
ENERGY 

STAR Version 
5.0 

requirements 
 Rated EPEAT 

Gold7 
Rated EPEAT 
Gold4 

Rated EPEAT 
Gold4 

Rated EPEAT 
Gold4 

Rated EPEAT 
Gold4 

Rated EPEAT 
Gold4 

Rated EPEAT 
Gold7 

 

 


