
Motivated Reinforcement Learning for Non-Player
Characters in Persistent Computer Game Worlds

Kathryn Merrick
University of Sydney and National ICT Australia

IMAGEN Program
Locked bag 9013

Alexandria NSW, 1435
+61 2 8374 5590

kkas0686@it.usyd.edu.au

Mary Lou Maher
University of Sydney, Key Centre for Design

Computing and Cognition
Wilkinson Building G04

University of Sydney, NSW 2006
+61 2 9351 4108

mary@arch.usyd.edu.au

ABSTRACT
Massively multiplayer online computer games are played in
complex, persistent virtual worlds. Over time, the landscape of
these worlds evolves and changes as players create and
personalise their own virtual property. In contrast, many non-
player characters that populate virtual game worlds possess a
fixed set of pre-programmed behaviours and lack the ability to
adapt and evolve in time with their surroundings. This paper
presents motivated reinforcement learning agents as a means of
creating non-player characters that can both evolve and adapt.
Motivated reinforcement learning agents explore their
environment and learn new behaviours in response to interesting
experiences, allowing them to display progressively evolving
behavioural patterns. In dynamic worlds, environmental changes
provide an additional source of interesting experiences triggering
further learning and allowing the agents to adapt their existing
behavioural patterns in time with their surroundings.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Learning – neural nets, I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search – dynamic programming, heuristic methods.

General Terms
Algorithms.

Keywords
Motivation, reinforcement learning, computer games, persistent
virtual worlds.

1. INTRODUCTION
Massively multiplayer online role-playing games (MMORPGs)
such as Ultima Online, Everquest and Asheron’s Call are defined
by a cast of non-player characters (NPCs) who act as enemies,
partners and support characters to provide challenges, offer
assistance and support the storyline. These characters exist in a
persistent virtual world in which thousands of human players take
on roles such as warriors, magicians and thieves and play and
interact with non-player characters and each other. Over time, the
landscape of these worlds evolves and changes as players build
their own houses or castles and craft items such as furniture,
armour or weapons to personalise their dwellings or sell to other
players.

Unlike computer games played in non-persistent worlds,
persistent game worlds offer months rather than hours of game

play, which must be supported by NPCs. However, current
technologies used to build non-player enemy, partner and support
characters tend to constrain them to a set of fixed behaviours
which cannot evolve in time with the world in which they dwell.
Motivated reinforcement learning (MRL) agents offer an
alternative to this type of character. MRL use an intrinsic
motivation process to identify interesting events which are used to
calculate a reward signal for a reinforcement learner. MRL agents
are able to continually identify new events on which to focus their
attention and learn about. In a game scenario, using MRL agents
to control NPCs, produces characters which are continually
evolving new behaviours as a response to their experiences in
their environment.

In the remainder of this section, we discuss the current
technologies used to build NPCs. Section 2 describes MRL
agents and the benefits they offer as an NPC technology. Section
3 provides two demonstrations of MRL agents in a simple role-
playing game scenario implemented in the Second Life virtual
world (www.secondlife.com). The first demonstration shows
MRL agents can be used to create support characters that are able
to explore their environment and learn new behaviours in
response to interesting experiences, allowing them to display
progressively evolving behavioural patterns. The second
demonstration shows how MRL agents can be used to create
partner characters which can adapt existing behavioural patterns
in response to changes in their environment.

1.1 Current Technologies for Non-Player
Characters
Non-player characters in MMORPGs fall into three main
categories: enemies, partners and support characters [5]. Enemies
in MMORPGs are characters which oppose human players in a
pseudo-physical sense by attacking the virtual life force of the
human player with weapons or magic. Partners take the opposite
role and attempt to protect human players with whom they are
allied. Alternatively, partner characters might perform non-
combat tasks such as selling goods on behalf of their human ally.
In some games, partner characters may be taught to perform
certain behaviours by players. Finally, support characters are the
merchants, tradesmen, guards, innkeepers and so on who support
the storyline of the game by offering quests, advice, goods for sale
or training. The technologies used to create these characters fall
into two broad categories: reflexive agents and learning agents.

1.1.1 Reflexive Agents
Reflexive behaviour [6] is a pre-programmed response to the state
of the environment – a reflex without reasoning. Only recognised
states will produce a response. Non-player characters such as
enemies, partners and support characters commonly use reflexive
techniques such as state machines and rule-based approaches to
define their behaviour. Rule-based approaches define a set of
rules about states of the game world of the form: if
<condition> then <action>. If the NPC observes a state
which fulfils the <condition> of a rule, then the corresponding
<action> is taken. Only states of the world which meet a
<condition> will produce an <action> response. An example
rule from a warrior NPC in the Baldur’s Gate RPG is [13]:

IF
 !Range(NearestEnemyOf(Myself),3)
 Range(NearestEnemyOf(Myself),8)

THEN
 RESPONSE #40
 EquipMostDamagingMelee()
 AttackReevalutate(NearestEnemyOf(Myself),60)

 RESPONSE #80
 EquipRanged()
 AttackReevalutate(NearestEnemyOf(Myself),30)

END

The condition component of this rule is an example of how such
rules are domain dependent as it makes the assumption that the
character’s environment contains enemies.

State machines can be used to divide an NPC’s reasoning process
into a set of internal states and transitions. In the Dungeon Siege
RPG, for example, each state contains a number of event
constructs which cause actions to be taken based on the state of
the game world. Triggers define when the NPC should transition
to another internal state. An example of part of a state machine
for a beast called a Gremel is [10]:

startup state Startup${
 trigger OnGoHandleMessage$

 (WE_ENTERED_WORLD){
 SetState Spawn$;
 }
}

state Spawn${
 event OnEnterState${
 ...
 }
 event OnGoHandleMessage$(eWorldEvent e$,

 WorldMessage msg$){
 ...
 if(master$.Go.Actor.GetSkillLevel

("Combat Magic") > 0.01){
Report.SScreen(master$.Go.Player.Ma
chineId, Report.Translate(
owner.go.getmessage("too_evil")));

}
else{
 ...

SendWorldMessage(WE_REQ_ACTIVATE,
Master$, newGoid$, 1);
PostWorldMessage(WE_REQ_ACTIVATE,
Master$, newGoid$, 2, .2);
Physics.SExplodeGo(owner.goid, 3,
MakeVector(0,3,0));

}

}
}

state Finish${
}

As only characters which multiply would require a spawn state,
this example shows how the states are character dependent. .In
addition, the condition components of the rules within the states
are again heavily domain dependent, assuming for example that
the environment contains characters that have a combat magic
attribute.

In a departure from purely reflexive techniques, the support
characters in some RPGs, such as Blade Runner, have simple
goals. However these have also tended to be fairly narrow,
supported by only a limited set of behaviours.

1.1.2 Learning Agents
Learning agents are able to modify their internal structure in order
to improve their performance with respect to some task [14]. In
some games such as Black and White, non-player characters can
be trained to learn behaviours specified by their human master.
The human provides the NPC with feedback such as food or
patting to encourage desirable behaviour and punishment to
discourage unwanted actions. While the behaviour of these
characters may potentially evolve in any direction desired by the
human, behaviour development relies on feedback from human
players, making it inappropriate for characters such as enemies or
support characters.

Researchers from Microsoft have shown that it is possible to use
reinforcement learning to allow NPCs to develop a single skill by
applying it to fighting characters for the Xbox game, Tao Feng
[3]. Reinforcement learning agents [10] are connected to their
environment by sensation and action. On each step of interaction
with the environment, the agent receives an input that contains
some indication of the current state of the environment and the
value of that state to the agent. This value is called a reward
signal. The agent records the reward signal by updating a
behavioural policy which represents information about the reward
received in each state sensed so far. The agent then chooses an
action which attempts to maximise the long-run sum of the values
of the reward signal. In Tao Feng, while NPCs using
reinforcement learning can adapt their fighting techniques over
time, it is not possible for them to identify new skills to learn
about as they are limited by a pre-programmed reward for
fighting.

2. MOTIVATED REINFORCEMENT
LEARNING AGENTS
Motivated reinforcement learning agents are meta-learners which
use a motivation function to provide a standard reinforcement
learning algorithm with an intrinsic reward signal that directs
learning. Unlike existing NPC technologies, the motivation
function uses domain independent rules based on the concept of
interest in order to calculate an intrinsic motivation signal. Skill
development is dependent on the agent’s environment and its
experiences rather than on character or domain specific rules or
state machines. This means that a single agent model applied to
different NPCs will develop different skills depending on the
NPC’s environment. These skills are developed progressively
over time and can adapt to changes in the agent’s environment.

Our motivated reinforcement leaning agent model is depicted in
Figure 1. In this model, W(t) represents the state of the agent’s
environment at time t. S(t) represents the state sensed by the agent
at time t. The sensation process S accepts the current sensed state
from the sensors and computes events as changes in the world
since the last sensed state. Events represent the dynamics of the
agent’s environment where sensed states provide information
about the current state. An agent remembers two sensed states,
the previous S(t’) = (s1(t’), s2(t’), … sL(t’) …) and the current S(t) =
(s1(t), s2(t), … sL(t) …). A comparison S(t)–S(t’) of these states
produces the difference variables ∆(s1(t), s1(t’)), ∆(s2(t), s2(t’)), …
∆(sL(t), sL(t’)) …. An event function defines the combination of
difference variables an agent recognises as events. In this paper,
we assume an event E(t) = (e1(t), e2(t), … eL(t) …) contains all non-
zero difference variables after a numerical subtraction of sensation
values. The motivation process M uses the current event E(t) and
the agent’s experiences of all events E(t-1) to produce a new
representation of experiences E(t) and a reward signal R(t).
The learning process L uses the Q-learning reinforcement strategy
[11] shown in Equation 1 to incorporate the sensed state into a
behavioural policy B(t-1) to produce the updated behaviour B(t)
which is stored in memory M.

Q(S(t),A(t)) Q(S(t),A(t))+β[R(t)+γ
A∈A

max Q(S(t+1),A(t+1))-Q(S(t),A(t))] (1)

Finally, the activation process A uses an exploration function with
the Q-learning action selection rule in Equation 2 to select an
action A(t) to perform from the updated behavioural policy B(t).
We used ε-greedy exploration for our experiments with ε = 0.1, β
= 0.9 and γ = 0.9. The chosen action A(t) triggers a corresponding
effector F(t) which makes a change to the agent’s environment.

A(t) =
A∈A

maxarg Q (S(t+1),A(t+1)) (2)

Figure 1. A motivated reinforcement learning agent model.

The key process that differentiates motivated reinforcement
learning from existing NPC technologies, is the motivation
process. Where existing NPC technologies relied on domain
specific rules, state machines and rewards, motivated
reinforcement learning uses a task dependent motivation process
to reason about the agent’s experiences E(t-1) and produce a reward
signal R(t) to direct the learning process.
A number of computational models of motivation have been
developed for use in artificial agents. These include models of
biological theories of motivation such as drive theory [2] and
cognitive theories such as curiosity and interest [9]. Cognitive
theories about phenomena such as curiosity and interest explain
this search in terms of constant adjustments and adaptations to a
baseline level of stimulation from the environment which in turn
defines some moderate, optimal stimulation level. As we are
interested in building agents that can adjust and adapt their
behaviour to learn multiple tasks in response to their environment,
these cognitive theories make an ideal starting point for
motivation functions.
Saunders and Gero implemented a computational model of
interest for social force agents by first detecting the novelty of
environmental stimuli then using this novelty value to calculate
interest. The novelty of an environmental stimulus is a measure
of the difference between expectations and observations of the
environment where expectations are formed as a result of an
agent’s experiences in its environment. Saunders and Gero model
these expectations or experiences using an Habituated Self-
Organising Map (HSOM) [7]. Interest in a situation is aroused
when its novelty is at a moderate level, meaning that the most
interesting experiences are those that are similar-yet-different to
previously encountered experiences. The relationship between the
intensity of a stimulus and its pleasantness or interest is modelled
using the Wundt curve [1] shown in Figure 3.
An HSOM consists of a standard Self-Organising Map (SOM) [4]
with an additional habituating neuron connected to every
clustering neuron of the SOM as shown in Figure 2. A SOM
consists of a topologically structured set U of neurons, each of
which represents a cluster of events. The SOM reduces the
complexity of the environment for the agent by clustering similar
events together for reasoning. Each time a stimulus event E(t) =
(e1(t), e2(t), … eL(t) …) is presented to the SOM a winning neuron
U(t) = (u1(t), u2(t), … uL(t) …) is chosen which best matches the
stimulus. This is done by selecting the neuron with the minimum
distance d to the stimulus event where d is calculated as:

d = ∑ −
L

2
L(t)L(t))e(u

The winning neuron and its eight topological neighbours are
moved closer to the input stimulus by adjusting their weights
using the update equation:

uL(t+1) = uL(t) + η (eL(t) – uL(t))

where 0 ≤ η ≤ 1 is the learning rate of the SOM. The
neighbourhood size and learning rate are kept constant so the
SOM is always learning. The activities of the winning neuron and
its neighbours are propagated up the synapse to the habituating
layer as a synaptic value σ(t) = 1. Neurons which do not belong to
the winning neighbourhood give an input of σ(t) = 0 to the
synapse. The synaptic efficacy N(t), which represents the novelty

A(t)

S(t), R(t)

B(t)

B(t-1), A(t-1)

F(t)

B(t)

S(t)

W(t)

S

S(t), E(t)

S(t-1)

S(t)

A(t)

E(t-1)

E(t)

M
 =

 {S
(t)

 U
 E

(t)
 U

 B
(t)

 U
 A

(t)
 }

sensors

effectors

M

L

A

of the stimulus E(t), is then calculated using Stanley’s model of
habituation (Stanley, 1976):

 τ
dt

dN (t)
 = α [N(0) – N(t)] – σ(t)

(3)

where N(0) = 1 is the initial novelty value, τ is a constant
governing the rate of habituation and α is a constant governing the
rate of recovery. In practice, it is desirable to split the habituation
constant τ into τ1 and τ2 where τ1 governs the rate of habitation in
neurons in the winning neighbourhood and τ2 governs the rate of
habitation in losing neurons. Using τ2 > τ1, the novelty of an event
will tend to increase at any time-step more slowly than it can be
decreased by the occurrence of other events allowing the HSOM
to learn more quickly than it forgets. N(t) is calculated stepwise at
time t by using the value N(t-1) stored in the habituating neuron to
calculate the derivative from Equation 3 and then approximating
N(t) stepwise using:

N(t) = N(t-1) +
dt

dN 1)-(t

Figure 2. A novelty filter. A clustering layer (SOM) is
connected to an habituating layer.

Habituation has the effect of causing synaptic efficacy or novelty
to decrease with subsequent presentations of a particular stimulus
or increase with subsequent non-presentations of the stimulus.
This represents forgetting by the HSOM and allows stimuli to
become novel more than once during an agent’s lifetime. Once
the novelty of a given stimulus has been generated, interest I of
the is calculated using the Wundt equation:

I(N(t)) =
e1

F

)F(2Nρ

max

min(t)
+−−+

+

+

–
e1

F

)F(2Nρ

max

min(t)
−−−+

−

−

The first term in the Wundt equation provides positive feedback
for the discovery of novel stimuli while the second term provides
negative feedback for highly novel stimuli. It peaks at a
maximum value for a moderate degree of stimulation as shown in
Figure 3, meaning that the most interesting events are those that
are similar-yet-different to previously encountered experiences.

+
maxF is the maximum positive feedback, −

maxF is the maximum
negative feedback, ρ+ and ρ- are the slopes of the positive and

negative feedback sigmoid functions, +
minF is the minimum

novelty to receive positive feedback and −
minF is the minimum

novelty to receive negative feedback. We used +
maxF = 1, −

maxF =

1, ρ+ = 10, ρ- = 10, +
minF = 0.5 and −

minF = 1.5 in our
experiments. The interest value I (E(t)) is used as the reward R(t)
which is passed from the motivation process M to the
reinforcement learning process L. The reward function is defined
as follows:

R(t) =
⎩
⎨
⎧

otherwise 0

emptynot (t)E if)(t)(N I

This reward function is based on the agent’s expectations of its
environment represented by an HSOM. The structure of the SOM
component of the HSOM is determined over time as a response to
the agent’s experiences of events in its environment. Thus, the
motivating force behind the agent’s actions is dependent on its
environment rather than on a task specific reward signal.

3. MOTIVATED NON-PLAYER
CHARACTERS
In this section we apply the MRL model described above to a
number of NPCs in a simple role-playing game scenario
implemented in the Second Life virtual world. The first
demonstration shows MRL agents can be used to create support
characters that are able to explore their environment and learn
new behaviours in response to interesting experiences, allowing
them to display progressively evolving behavioural patterns. The
second demonstration shows how MRL agents can be used to
create partner characters which can adapt existing behavioural
patterns in response to changes in their environment. In both
demonstrations we use the same MRL agent model. Only the
agent’s environment and effectors differ. In this way, we show
practically how the agents develop different behaviours as a result
of their environment and experiences rather and not because they
have domain specific or character specific programming.

3.1 The Game World
In order to experiment with MRL agents, we implemented a
village scenario in Second Life (www.secondlife.com). Second
Life is a commercially available persistent virtual world in which
users can build and act in real time. The village, shown in Figure
4 has a carpenter shop and a smithy. There are various tools and
other artefacts hidden about the village including an axe, a pick, a
lathe and a forge. To the north of the village are a forest and an

Positive
feedback

Negative
feedback

Interest

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2Novelty 2N(t)

In
te

re
st

 (R
ew

ar
d)

 I(
2N

(t
))

 =
 R

(t
)

.

Figure 3. The Wundt curve is the difference between
positive and negative feedback functions.

E(t)

N(t) = habituated
value from winning
clustering neuron

winning
neighbourhood
σ(t) = 1

losing neurons
σ(t) = 0

Clustering layer
(SOM)

Habituating layer

iron mine. Objects in the environment contain scripts written in
Second Life’s Linden Scripting Language (LSL) defining the
mechanics of their use. For example, the pick object places iron
in an NPC’s backpack when the NPC is holding the pick near the
mine and chooses the “use” action. Unlike the smart terrain
concept used in The Sims, it is not necessary to define details such
as when to use the pick inside the pick and what to do with the
resulting iron inside the iron. This will be learned by the MRL
agent controlling the NPC as it explores its environment. Second
Life includes a physics engine so objects may optionally obey
laws of gravity and friction.
Second Life avatars can be controlled by an agent program written
in a programming language such as Java using the framework
shown in Figure 5. The Java agent program consists of sensor
stubs, MRL agent reasoning processes and effector stubs. The
Java sensor and effector stubs act as clients which connect via
XML-RPC to corresponding sensor and effector stubs written in
the Linden Scripting Langauge (LSL) and residing on a Second
Life server. The LSL sensor and effector stubs are associated
with a backpack object worn by the avatar the Java agent is to
control. As well as enabling the Java agent to control the position
of the avatar and sense the surrounding environment, the
backpack also acts as a repository in which the agent can place
objects it picks up and carries.

Figure 4. A village scenario implemented in Second Life.

Figure 5. System architecture for Second Life agents.

Rather than using a fixed length vector representation for this
environment as is common with standard reinforcement learning,
we use a context free grammar (CFG) [8]. Each world state W(t)
and sensed state S(t) is a string from a context-free language.
While CFGs can represent any environment that can be
represented by a fixed length vector, they have a number of
advantages over a fixed length representation. Using a CFG, only
objects that are currently present in the environment need be
present in the state string for the current state. This means that the
state string can include any number of new objects as the agent
encounters them, without a permanent variable being required for
that object. This is desirable in game environments where players
can build while the game is in progress as it is not known at
design time what objects may occur and what variables may be
needed.
The agent sensors are capable of assigning labels L to their
sensations of the world, allowing sensations with the same label to
be compared. Some example sensed states in this environment in
label-sensation (L:s) format are:

S(1)((locX:36)(locY:71)(locZ:30)(Pick:1)(Iron:1))

S(2)((locX:37)(locY:76)(locZ:30)(Iron:1)(Mine:1))

A SOM, and thus a HSOM, can be modified to accept CFG
representations of states by initialising each neuron as an empty
vector and allowing neurons to grow as required. Likewise, a
table-based reinforcement learner can be modified to use a CFG
representation by storing strings from the CFG in the state-action
table in place of vectors.

3.2 Progressive Emergence of Behavioural
Patterns in Motivated Support Characters
Support characters in role-playing games frequently play the role
of tradespeople such as blacksmiths, and lumberjacks. This
enables them to provide materials to human player characters as
well as training in their skills. Such interactions with human
players are usually facilitated through a graphical or text based
user interface. While we assume the continued existence of a user
interface to facilitate communication between the support
character and human players, we use a MRL agent to control the
behaviour of the support character, in place of typical rule based
or state machine approaches.

In this scenario the MRL agent has three sensors: a location
sensor, an object sensor and an inventory sensor. These allow it
to sense its x, y and z co-ordinates, the objects within a 7 metre
radius and the objects in its backpack (not including the sensor
and effector stubs). The agent has three effectors: a move to
object effector, a pick up object effector and a use object effector.
The pick, when used on the mine, will produce iron which can be
converted to weapons when used near the forge. Similarly, the
axe, when used near a tree, will produce timber which can in turn
be converted to furniture when used near the lathe.

While the MRL agent is capable of running continuously for long
periods of time, in the following paragraphs we analyse the first
five hours of its life. Figure 6 shows the actions performed by the
MRL agent and some of the interest values (rewards) which
motivated it. Specifically, Figure 6 includes line plots against
time of the interest values for mining iron and making weapons,
as well as a scatter plot showing the actual actions performed
against time. The key for the actions is shown in Table 1.

Second Life Server Client

Java Sensor Stubs

Java Effector Stubs

LSL Sensor Stubs

LSL Effector Stubs

XML-RPC

XML-RPC

MRL Agent
Reasoning Processes

Table 1 – Enumeration of agent actions for Scenario 1.
 Action ID Description
1 Move to forge.
2 Move to pick.
3 Move to lathe.
4 Move to tree.
5 Move to mine.
6 Move to axe.
7 Add pick to inventory.
8 Add axe to inventory.
9 Use pick.
10 Use axe.
11 Use iron.
12 Use wood.

In the first 3.5 hours the action scatter plot shows a preference for
actions 1, 3, 4 and 5: the move forge, lathe, tree and mine actions.
In these periods the agent is performing a travelling behaviour
between some subset of the locations in the environment. Noise
on the scatter plot is a result of the random action selection in the
ε-greedy exploration strategy. At t=3.5 hours, the interest curves
show the interest values for forging weapons and mining iron
increase. At this time, the action scatter plot shows a preference
by the agent for actions 11, 9, 5 and 1: using the iron and the pick
and moving to the mine and the forge. This is an example of how
MRL agents are able to progressively evolve new behaviours over
time in response to their experiences in their environment.
In the first five hours of its life the MRL agent does not pursue
furniture making more than a few times. However, later in its life

it may develop an interest in that task and learn the appropriate
behaviour to perform it. Thus, when multiple MRL agents are
introduced into the world, each agent will develop behaviours
based on their experiences in the world, resulting in a number of
different characters including blacksmiths, carpenters and
travellers.

3.3 Adaptable Behavioural Patterns in
Motivated Partner Characters
Another role commonly played by NPCs is that of a partner
character while the human player is not online or to perform
repetitive tasks on their behalf. For example, in Ultima Online
players can set up vendor characters to sell the goods they have
crafted. These vendors stand in one place and player characters
have to come to them in order to trigger a user interface allowing
them to buy goods. While we assume the continued existence of
the user interface, MRL agents can offer a dynamic alternative to
these static vendors.

In this scenario the agent has two sensors: a location sensor and an
object sensor. These allow it to sense its x, y and z co-ordinates
and the objects within a 7 metre radius. The agent has one
effector: a move to object effector. The object sensor can detect
the smithy, the carpenter’s shop, the mine, the forge, lathe, pick,
axe and a number of trees as shown in Figure 7. In a real game,
there might be human controlled avatars at any of these locations.
We ran an MRL agent for 2 hours in this scenario. The actions
performed by the MRL agent in this time are plotted in Figure 8.
A legend is shown in Table 2.

0

0.5

1

M
in

in
g

Iro
n

 .

0

0.5

1

Fo
rg

in
g

W
ea

po
ns

 .

1
2
3
4
5
6
7
8
9

10
11
12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (Hours)

A
ct

io
n

ID
 .

Figure 6 – Actions performed by an MRL agent and some of the interest values (rewards) which motivated them, including (top
to bottom) interest in forging weapons and iron mining.

Figure 7. The village scenario with additional objects.

Initially the vendor character was located near the mine and the
iron. These two locations became recurrent destinations over the
course of its lifetime. During the first hour the vendor initially
focused its attention on moving between the mine and iron and the
forge and pick. Around t=0.2 its focus of attention shifted and a
new behaviour evolved for moving between the wood and the
chair.

Table 2 – Enumeration of agent actions for S 2.
 Action ID Description
1 Move to pick.
2 Move to iron.
3 Move to forge.
4 Move to sword.
5 Move to smithy.
6 Move to mine.
7 Move to forest.
8 Move to wood.
9 Move to axe.
10 Move to chair.
11 Move to lathe.
12 Move to carpenter.
13 Move to tree.
14 Move to Kathryn’s House

At t=0.6 the agent accidentally tripped over the sword, shifting it
to a new location. This caused a flurry of new events to become
interesting including moving to the forest. Around t=0.8 a player
character called Kathryn built a new house next to the iron mine
as shown in Figure 8. After a short period of time the vendor
adapted its existing behavioural patterns and began to include this
house as a destination in its behaviour.

The ability of the MRL vendor to focus its attention on different
destinations has two benefits. Firstly, the character is more
realistic as it can move around like a travelling salesperson rather
than standing in one spot. Secondly, because the vendor can
move, its human master is receiving better exposure of his or her
goods to potential customers. As the world changes the travelling
salesperson can adapt its behaviours in response. This scenario
could be further extended to allow the MRL agent to sense
information about the goods purchased from it by human players
using its user interface. This would allow it to develop
behavioural patterns based on its experiences with its customers
and further improve the vendor service it offers.

Figure 8. The village scenario after Kathryn has built a

house.

Figure 8 – Actions performed by a travelling vendor MRL agent.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (Hours)

A
ct

io
n

ID

4. CONCLUSION
This paper has presented motivated reinforcement learning agents
as a means of creating non-player characters which can both
evolve and adapt. Motivated reinforcement learning agents
explore their environment and learn new behaviours in response
to interesting experiences, allowing them to display progressively
evolving behavioural patterns. In dynamic worlds, environmental
changes provide an additional source of interesting experiences
triggering further learning and allowing the agents to adapt their
existing behavioural patterns in time with their surroundings.
Furthermore, motivated reinforcement learning allows a single
agent model can be applied to multiple characters which then
develop different behaviours based on their experiences in their
environment.

5. ACKNOWLEDGMENTS
This research was supported by a National ICT Australia PhD
scholarship. National ICT Australia is funded by the Australian
Government’s Backing Australia’s Ability initiative, in part
through the Australian Research Council.

6. REFERENCES
[1] Berlyne, D. E. Aesthetics and psychobiology. Englewood

Cliffs, NJ: Prentice-Hall, 1971.
[2] Canamero, L. Modelling motivations and emotions as a basis

for intelligent behaviour. In Proceedings of the First
International Symposium on Autonomous Agents. (New
York, NY), ACM Press, 1995, 148-155

[3] Graepel, T., Herbrich, R., and Gold, J. Learning to Fight.
Proceedings of the International Conference on Computer
Games: Artificial Intelligence, Design and Education. 2004.

[4] Kohonen, T. Self-organisation and associative memory.
Springer, (Berlin), 1993.

[5] Laird, J., and van Lent, M. Interactive computer games:
human-level AI's killer application. In Proceedings of AAAI

National Conference on Artificial Intelligence, 2000, 1171-
1178.

[6] Maher, M.-L., and Gero, J.S. Agent models of 3D virtual
worlds, ACADIA 2002: Thresholds. (California State
Polytechnic University, Pamona), 2002, 127-138.

[7] Marsland, S., Nehmzow, U. and Shapiro, J. A real-time
novelty detector for a mobile robot. EUREL European
Advanced Robotics Systems Masterclass and Conference,
2000.

[8] Merceron, A. Languages and Logic. Pearson Education
Australia, 2001.

[9] Saunders, R., & Gero, J. S. Curious agents and situated
design evaluations. In J. S. Gero & F. M. T. Brazier (Eds.),
Agents In Design, 2002, 133-149.

[10] Siege University, 303: Skrit, http://garage.gaspowered.com,
Accessed March, 2006.

[11] Sutton, S. and Barto, A. Reinforcement learning: an
introduction. The MIT Press, 2000.

[12] Watkins, C., Learning from delayed rewards, PhD Thesis,
Cambridge University, (Cambridge, England), 1989.

[13] Woodcock, S., Games making interesting use of artificial
intelligence techniques, http://www.gameai.com/ Accessed
March, 2006.

[14] Zoubin G., Unsupervised Learning, In Bousquet, O.,
Raetsch, G., von Luxburg, U., (Editors), Advanced Lectures
on Machine Learning, LNAI 3176, Springer-Verlag, 2004.

