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ABSTRACT 
Massively multiplayer online computer games are played in 
complex, persistent virtual worlds.  Over time, the landscape of 
these worlds evolves and changes as players create and 
personalise their own virtual property.  In contrast, many non-
player characters that populate virtual game worlds possess a 
fixed set of pre-programmed behaviours and lack the ability to 
adapt and evolve in time with their surroundings.  This paper 
presents motivated reinforcement learning agents as a means of 
creating non-player characters that can both evolve and adapt.  
Motivated reinforcement learning agents explore their 
environment and learn new behaviours in response to interesting 
experiences, allowing them to display progressively evolving 
behavioural patterns.  In dynamic worlds, environmental changes 
provide an additional source of interesting experiences triggering 
further learning and allowing the agents to adapt their existing 
behavioural patterns in time with their surroundings.                   

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Learning – neural nets, I.2.8 
[Artificial Intelligence]: Problem Solving, Control Methods, and 
Search – dynamic programming, heuristic methods.  

General Terms 
Algorithms. 

Keywords 
Motivation, reinforcement learning, computer games, persistent 
virtual worlds. 

1. INTRODUCTION 
Massively multiplayer online role-playing games (MMORPGs) 
such as Ultima Online, Everquest and Asheron’s Call are defined 
by a cast of non-player characters (NPCs) who act as enemies, 
partners and support characters to provide challenges, offer 
assistance and support the storyline.  These characters exist in a 
persistent virtual world in which thousands of human players take 
on roles such as warriors, magicians and thieves and play and 
interact with non-player characters and each other.  Over time, the 
landscape of these worlds evolves and changes as players build 
their own houses or castles and craft items such as furniture, 
armour or weapons to personalise their dwellings or sell to other 
players.   

Unlike computer games played in non-persistent worlds, 
persistent game worlds offer months rather than hours of game 

play, which must be supported by NPCs.  However, current 
technologies used to build non-player enemy, partner and support 
characters tend to constrain them to a set of fixed behaviours 
which cannot evolve in time with the world in which they dwell.  
Motivated reinforcement learning (MRL) agents offer an 
alternative to this type of character.  MRL use an intrinsic 
motivation process to identify interesting events which are used to 
calculate a reward signal for a reinforcement learner.  MRL agents 
are able to continually identify new events on which to focus their 
attention and learn about.  In a game scenario, using MRL agents 
to control NPCs, produces characters which are continually 
evolving new behaviours as a response to their experiences in 
their environment.      

In the remainder of this section, we discuss the current 
technologies used to build NPCs.  Section 2 describes MRL 
agents and the benefits they offer as an NPC technology.  Section 
3 provides two demonstrations of MRL agents in a simple role-
playing game scenario implemented in the Second Life virtual 
world (www.secondlife.com).  The first demonstration shows 
MRL agents can be used to create support characters that are able 
to explore their environment and learn new behaviours in 
response to interesting experiences, allowing them to display 
progressively evolving behavioural patterns.  The second 
demonstration shows how MRL agents can be used to create 
partner characters which can adapt existing behavioural patterns 
in response to changes in their environment.       

1.1 Current Technologies for Non-Player 
Characters 
Non-player characters in MMORPGs fall into three main 
categories: enemies, partners and support characters [5].  Enemies 
in MMORPGs are characters which oppose human players in a 
pseudo-physical sense by attacking the virtual life force of the 
human player with weapons or magic.  Partners take the opposite 
role and attempt to protect human players with whom they are 
allied.  Alternatively, partner characters might perform non-
combat tasks such as selling goods on behalf of their human ally.  
In some games, partner characters may be taught to perform 
certain behaviours by players.  Finally, support characters are the 
merchants, tradesmen, guards, innkeepers and so on who support 
the storyline of the game by offering quests, advice, goods for sale 
or training.  The technologies used to create these characters fall 
into two broad categories: reflexive agents and learning agents.        



1.1.1 Reflexive Agents 
Reflexive behaviour [6] is a pre-programmed response to the state 
of the environment – a reflex without reasoning.  Only recognised 
states will produce a response.  Non-player characters such as 
enemies, partners and support characters commonly use reflexive 
techniques such as state machines and rule-based approaches to 
define their behaviour.  Rule-based approaches define a set of 
rules about states of the game world of the form: if 
<condition> then <action>.  If the NPC observes a state 
which fulfils the <condition> of a rule, then the corresponding 
<action> is taken.  Only states of the world which meet a 
<condition> will produce an <action> response.  An example 
rule from a warrior NPC in the Baldur’s Gate RPG is [13]:  

IF 
      !Range(NearestEnemyOf(Myself),3) 
      Range(NearestEnemyOf(Myself),8) 

THEN 
      RESPONSE #40 
      EquipMostDamagingMelee()   
      AttackReevalutate(NearestEnemyOf(Myself),60) 
 
      RESPONSE #80 
      EquipRanged() 
      AttackReevalutate(NearestEnemyOf(Myself),30) 

END 
 
The condition component of this rule is an example of how such 
rules are domain dependent as it makes the assumption that the 
character’s environment contains enemies.  

State machines can be used to divide an NPC’s reasoning process 
into a set of internal states and transitions.  In the Dungeon Siege 
RPG, for example, each state contains a number of event 
constructs which cause actions to be taken based on the state of 
the game world.  Triggers define when the NPC should transition 
to another internal state.  An example of part of a state machine 
for a beast called a Gremel is [10]: 

startup state Startup${ 
     trigger OnGoHandleMessage$ 

    (WE_ENTERED_WORLD){ 
        SetState Spawn$; 
   } 
} 

 
state Spawn${  
   event OnEnterState${ 
     ... 
   }    
   event OnGoHandleMessage$( eWorldEvent e$,  

  WorldMessage msg$ ){  
            ... 
            if(master$.Go.Actor.GetSkillLevel 

("Combat Magic") > 0.01){                           
Report.SScreen(master$.Go.Player.Ma
chineId, Report.Translate( 
owner.go.getmessage("too_evil"))); 

} 
else{  
    ...  

SendWorldMessage( WE_REQ_ACTIVATE, 
Master$, newGoid$, 1 ); 
PostWorldMessage(WE_REQ_ACTIVATE, 
Master$, newGoid$, 2, .2); 
Physics.SExplodeGo( owner.goid, 3, 
MakeVector(0,3,0) ); 

}     

} 
} 
 
state Finish${ 
} 
 

As only characters which multiply would require a spawn state, 
this example shows how the states are character dependent.  .In 
addition, the condition components of the rules within the states 
are again heavily domain dependent, assuming for example that 
the environment contains characters that have a combat magic 
attribute.   

In a departure from purely reflexive techniques, the support 
characters in some RPGs, such as Blade Runner, have simple 
goals.  However these have also tended to be fairly narrow, 
supported by only a limited set of behaviours.   

1.1.2 Learning Agents 
Learning agents are able to modify their internal structure in order 
to improve their performance with respect to some task [14].  In 
some games such as Black and White, non-player characters can 
be trained to learn behaviours specified by their human master.  
The human provides the NPC with feedback such as food or 
patting to encourage desirable behaviour and punishment to 
discourage unwanted actions.  While the behaviour of these 
characters may potentially evolve in any direction desired by the 
human, behaviour development relies on feedback from human 
players, making it inappropriate for characters such as enemies or 
support characters. 

Researchers from Microsoft have shown that it is possible to use 
reinforcement learning to allow NPCs to develop a single skill by 
applying it to fighting characters for the Xbox game, Tao Feng 
[3].  Reinforcement learning agents [10] are connected to their 
environment by sensation and action.  On each step of interaction 
with the environment, the agent receives an input that contains 
some indication of the current state of the environment and the 
value of that state to the agent.  This value is called a reward 
signal.  The agent records the reward signal by updating a 
behavioural policy which represents information about the reward 
received in each state sensed so far.  The agent then chooses an 
action which attempts to maximise the long-run sum of the values 
of the reward signal.  In Tao Feng, while NPCs using 
reinforcement learning can adapt their fighting techniques over 
time, it is not possible for them to identify new skills to learn 
about as they are limited by a pre-programmed reward for 
fighting.   

2. MOTIVATED REINFORCEMENT 
LEARNING AGENTS 
Motivated reinforcement learning agents are meta-learners which 
use a motivation function to provide a standard reinforcement 
learning algorithm with an intrinsic reward signal that directs 
learning.  Unlike existing NPC technologies, the motivation 
function uses domain independent rules based on the concept of 
interest in order to calculate an intrinsic motivation signal.  Skill 
development is dependent on the agent’s environment and its 
experiences rather than on character or domain specific rules or 
state machines.  This means that a single agent model applied to 
different NPCs will develop different skills depending on the 
NPC’s environment.  These skills are developed progressively 
over time and can adapt to changes in the agent’s environment.      



Our motivated reinforcement leaning agent model is depicted in 
Figure 1.  In this model, W(t) represents the state of the agent’s 
environment at time t.  S(t) represents the state sensed by the agent 
at time t.  The sensation process S accepts the current sensed state 
from the sensors and computes events as changes in the world 
since the last sensed state.  Events represent the dynamics of the 
agent’s environment where sensed states provide information 
about the current state.  An agent remembers two sensed states, 
the previous S(t’) = (s1(t’), s2(t’), … sL(t’) …) and the current S(t) = 
(s1(t), s2(t), … sL(t) …).  A comparison S(t)–S(t’) of these states 
produces the difference variables ∆(s1(t), s1(t’)), ∆(s2(t), s2(t’)), … 
∆(sL(t), sL(t’)) ….  An event function defines the combination of 
difference variables an agent recognises as events.  In this paper, 
we assume an event E(t) = (e1(t), e2(t), … eL(t) …) contains all non-
zero difference variables after a numerical subtraction of sensation 
values.  The motivation process M uses the current event E(t) and 
the agent’s experiences of all events E(t-1) to produce a new 
representation of experiences E(t) and a reward signal R(t).  
The learning process L uses the Q-learning reinforcement strategy 
[11] shown in Equation 1 to incorporate the sensed state into a 
behavioural policy B(t-1) to produce the updated behaviour B(t) 
which is stored in memory M.     

Q(S(t),A(t)) Q(S(t),A(t))+β[R(t)+γ
A∈A

max Q(S(t+1),A(t+1))-Q(S(t),A(t))] (1) 

Finally, the activation process A uses an exploration function with 
the Q-learning action selection rule in Equation 2 to select an 
action A(t) to perform from the updated behavioural policy B(t).  
We used ε-greedy exploration for our experiments with ε = 0.1, β 
= 0.9 and γ = 0.9.  The chosen action A(t) triggers a corresponding 
effector F(t) which makes a change to the agent’s environment.   

A(t) = 
A∈A

maxarg Q (S(t+1),A(t+1)) (2) 

 
Figure 1.  A motivated reinforcement learning agent model. 

The key process that differentiates motivated reinforcement 
learning from existing NPC technologies, is the motivation 
process.  Where existing NPC technologies relied on domain 
specific rules, state machines and rewards, motivated 
reinforcement learning uses a task dependent motivation process 
to reason about the agent’s experiences E(t-1) and produce a reward 
signal R(t)  to direct the learning process.   
A number of computational models of motivation have been 
developed for use in artificial agents.  These include models of 
biological theories of motivation such as drive theory [2] and 
cognitive theories such as curiosity and interest [9]. Cognitive 
theories about phenomena such as curiosity and interest explain 
this search in terms of constant adjustments and adaptations to a 
baseline level of stimulation from the environment which in turn 
defines some moderate, optimal stimulation level.  As we are 
interested in building agents that can adjust and adapt their 
behaviour to learn multiple tasks in response to their environment, 
these cognitive theories make an ideal starting point for 
motivation functions.   
Saunders and Gero implemented a computational model of 
interest for social force agents by first detecting the novelty of 
environmental stimuli then using this novelty value to calculate 
interest.  The novelty of an environmental stimulus is a measure 
of the difference between expectations and observations of the 
environment where expectations are formed as a result of an 
agent’s experiences in its environment.  Saunders and Gero model 
these expectations or experiences using an Habituated Self-
Organising Map (HSOM) [7].  Interest in a situation is aroused 
when its novelty is at a moderate level, meaning that the most 
interesting experiences are those that are similar-yet-different to 
previously encountered experiences.  The relationship between the 
intensity of a stimulus and its pleasantness or interest is modelled 
using the Wundt curve [1] shown in Figure 3.             
An HSOM consists of a standard Self-Organising Map (SOM) [4] 
with an additional habituating neuron connected to every 
clustering neuron of the SOM as shown in Figure 2.  A SOM 
consists of a topologically structured set U of neurons, each of 
which represents a cluster of events.  The SOM reduces the 
complexity of the environment for the agent by clustering similar 
events together for reasoning.  Each time a stimulus event E(t) = 
(e1(t), e2(t), …  eL(t) …) is presented to the SOM a winning neuron 
U(t) = (u1(t), u2(t), …  uL(t) …)  is chosen which best matches the 
stimulus.  This is done by selecting the neuron with the minimum 
distance d to the stimulus event where d is calculated as: 

d = ∑ −
L

2
L(t)L(t) )e(u  

The winning neuron and its eight topological neighbours are 
moved closer to the input stimulus by adjusting their weights 
using the update equation:   

uL(t+1) = uL(t)  + η (eL(t) – uL(t)) 

where 0 ≤ η ≤ 1 is the learning rate of the SOM.  The 
neighbourhood size and learning rate are kept constant so the 
SOM is always learning.  The activities of the winning neuron and 
its neighbours are propagated up the synapse to the habituating 
layer as a synaptic value σ(t) = 1.  Neurons which do not belong to 
the winning neighbourhood give an input of σ(t) = 0 to the 
synapse.  The synaptic efficacy N(t), which represents the novelty 
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of the stimulus E(t), is then calculated using Stanley’s model of 
habituation (Stanley, 1976):   

 τ
dt

dN (t)
 = α [N(0) – N(t)] – σ(t) 

 
(3) 

where N(0) = 1 is the initial novelty value, τ is a constant 
governing the rate of habituation and α is a constant governing the 
rate of recovery.  In practice, it is desirable to split the habituation 
constant τ into τ1 and τ2 where τ1 governs the rate of habitation in 
neurons in the winning neighbourhood and τ2 governs the rate of 
habitation in losing neurons.  Using τ2 > τ1, the novelty of an event 
will tend to increase at any time-step more slowly than it can be 
decreased by the occurrence of other events allowing the HSOM 
to learn more quickly than it forgets.  N(t) is calculated stepwise at 
time t by using the value N(t-1) stored in the habituating neuron to 
calculate the derivative from Equation 3 and then approximating 
N(t) stepwise using: 

N(t) = N(t-1) + 
dt

dN 1)-(t
 

 

Figure 2.  A novelty filter.  A clustering layer (SOM) is 
connected to an habituating layer. 

Habituation has the effect of causing synaptic efficacy or novelty 
to decrease with subsequent presentations of a particular stimulus 
or increase with subsequent non-presentations of the stimulus.  
This represents forgetting by the HSOM and allows stimuli to 
become novel more than once during an agent’s lifetime.  Once 
the novelty of a given stimulus has been generated, interest I of 
the is calculated using the Wundt equation:   

I(N(t)) = 
e1

F

)F(2Nρ

max

min(t)
+−−+

+

+

– 
e1

F

)F(2Nρ

max

min(t)
−−−+

−

−

 

The first term in the Wundt equation provides positive feedback 
for the discovery of novel stimuli while the second term provides 
negative feedback for highly novel stimuli.  It peaks at a 
maximum value for a moderate degree of stimulation as shown in 
Figure 3, meaning that the most interesting events are those that 
are similar-yet-different to previously encountered experiences.   

+
maxF is the maximum positive feedback, −

maxF is the maximum 
negative feedback, ρ+ and ρ- are the slopes of the positive and 

negative feedback sigmoid functions, +
minF is the minimum 

novelty to receive positive feedback and −
minF is the minimum 

novelty to receive negative feedback.  We used +
maxF = 1, −

maxF = 

1, ρ+ = 10, ρ-  = 10, +
minF  = 0.5 and −

minF  = 1.5 in our 
experiments.  The interest value I (E(t)) is used as the reward R(t) 
which is passed from the motivation process M to the 
reinforcement learning process L.  The reward function is defined 
as follows: 

R(t) = 
⎩
⎨
⎧

otherwise 0

emptynot (t)E if )(t)(N I
 

This reward function is based on the agent’s expectations of its 
environment represented by an HSOM.  The structure of the SOM 
component of the HSOM is determined over time as a response to 
the agent’s experiences of events in its environment.  Thus, the 
motivating force behind the agent’s actions is dependent on its 
environment rather than on a task specific reward signal.      

 

3. MOTIVATED NON-PLAYER 
CHARACTERS 
In this section we apply the MRL model described above to a 
number of NPCs in a simple role-playing game scenario 
implemented in the Second Life virtual world.  The first 
demonstration shows MRL agents can be used to create support 
characters that are able to explore their environment and learn 
new behaviours in response to interesting experiences, allowing 
them to display progressively evolving behavioural patterns.  The 
second demonstration shows how MRL agents can be used to 
create partner characters which can adapt existing behavioural 
patterns in response to changes in their environment.  In both 
demonstrations we use the same MRL agent model.  Only the 
agent’s environment and effectors differ.  In this way, we show 
practically how the agents develop different behaviours as a result 
of their environment and experiences rather and not because they 
have domain specific or character specific programming.    

3.1 The Game World 
In order to experiment with MRL agents, we implemented a 
village scenario in Second Life (www.secondlife.com).  Second 
Life is a commercially available persistent virtual world in which 
users can build and act in real time.  The village, shown in Figure 
4 has a carpenter shop and a smithy.  There are various tools and 
other artefacts hidden about the village including an axe, a pick, a 
lathe and a forge.  To the north of the village are a forest and an 
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positive and negative feedback functions.
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iron mine.  Objects in the environment contain scripts written in 
Second Life’s Linden Scripting Language (LSL) defining the 
mechanics of their use.  For example, the pick object places iron 
in an NPC’s backpack when the NPC is holding the pick near the 
mine and chooses the “use” action.  Unlike the smart terrain 
concept used in The Sims, it is not necessary to define details such 
as when to use the pick inside the pick and what to do with the 
resulting iron inside the iron.  This will be learned by the MRL 
agent controlling the NPC as it explores its environment.  Second 
Life includes a physics engine so objects may optionally obey 
laws of gravity and friction.    
Second Life avatars can be controlled by an agent program written 
in a programming language such as Java using the framework 
shown in Figure 5.  The Java agent program consists of sensor 
stubs, MRL agent reasoning processes and effector stubs.  The 
Java sensor and effector stubs act as clients which connect via 
XML-RPC to corresponding sensor and effector stubs written in 
the Linden Scripting Langauge (LSL) and residing on a Second 
Life server.  The LSL sensor and effector stubs are associated 
with a backpack object worn by the avatar the Java agent is to 
control.  As well as enabling the Java agent to control the position 
of the avatar and sense the surrounding environment, the 
backpack also acts as a repository in which the agent can place 
objects it picks up and carries. 
   

   
Figure 4.  A village scenario implemented in Second Life. 

 
Figure 5.  System architecture for Second Life agents. 

 

Rather than using a fixed length vector representation for this 
environment as is common with standard reinforcement learning, 
we use a context free grammar (CFG) [8].  Each world state W(t) 
and sensed state S(t) is a string from a context-free language.  
While CFGs can represent any environment that can be 
represented by a fixed length vector, they have a number of 
advantages over a fixed length representation.  Using a CFG, only 
objects that are currently present in the environment need be 
present in the state string for the current state.  This means that the 
state string can include any number of new objects as the agent 
encounters them, without a permanent variable being required for 
that object.  This is desirable in game environments where players 
can build while the game is in progress as it is not known at 
design time what objects may occur and what variables may be 
needed.      
The agent sensors are capable of assigning labels L to their 
sensations of the world, allowing sensations with the same label to 
be compared.  Some example sensed states in this environment in 
label-sensation (L:s) format are:   

S(1)((locX:36)(locY:71)(locZ:30)(Pick:1)(Iron:1)) 

S(2)((locX:37)(locY:76)(locZ:30)(Iron:1)(Mine:1)) 

A SOM, and thus a HSOM, can be modified to accept CFG 
representations of states by initialising each neuron as an empty 
vector and allowing neurons to grow as required.  Likewise, a 
table-based reinforcement learner can be modified to use a CFG 
representation by storing strings from the CFG in the state-action 
table in place of vectors. 

3.2 Progressive Emergence of Behavioural 
Patterns in Motivated Support Characters 
Support characters in role-playing games frequently play the role 
of tradespeople such as blacksmiths, and lumberjacks.  This 
enables them to provide materials to human player characters as 
well as training in their skills.  Such interactions with human 
players are usually facilitated through a graphical or text based 
user interface.  While we assume the continued existence of a user 
interface to facilitate communication between the support 
character and human players, we use a MRL agent to control the 
behaviour of the support character, in place of typical rule based 
or state machine approaches.       

In this scenario the MRL agent has three sensors: a location 
sensor, an object sensor and an inventory sensor.  These allow it 
to sense its x, y and z co-ordinates, the objects within a 7 metre 
radius and the objects in its backpack (not including the sensor 
and effector stubs).  The agent has three effectors: a move to 
object effector, a pick up object effector and a use object effector.  
The pick, when used on the mine, will produce iron which can be 
converted to weapons when used near the forge.  Similarly, the 
axe, when used near a tree, will produce timber which can in turn 
be converted to furniture when used near the lathe. 

While the MRL agent is capable of running continuously for long 
periods of time, in the following paragraphs we analyse the first 
five hours of its life.  Figure 6 shows the actions performed by the 
MRL agent and some of the interest values (rewards) which 
motivated it.  Specifically, Figure 6 includes line plots against 
time of the interest values for mining iron and making weapons, 
as well as a scatter plot showing the actual actions performed 
against time.  The key for the actions is shown in Table 1.   

Second Life Server Client 
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Table 1 – Enumeration of agent actions for Scenario 1. 
  Action ID Description 
1 Move to forge. 
2 Move to pick. 
3 Move to lathe. 
4 Move to tree. 
5 Move to mine. 
6 Move to axe. 
7 Add pick to inventory. 
8 Add axe to inventory. 
9 Use pick. 
10 Use axe. 
11 Use iron. 
12 Use wood. 

 
In the first 3.5 hours the action scatter plot shows a preference for 
actions 1, 3, 4 and 5: the move forge, lathe, tree and mine actions.  
In these periods the agent is performing a travelling behaviour 
between some subset of the locations in the environment.   Noise 
on the scatter plot is a result of the random action selection in the 
ε-greedy exploration strategy.  At t=3.5 hours, the interest curves 
show the interest values for forging weapons and mining iron 
increase.  At this time, the action scatter plot shows a preference 
by the agent for actions 11, 9, 5 and 1: using the iron and the pick 
and moving to the mine and the forge.  This is an example of how 
MRL agents are able to progressively evolve new behaviours over 
time in response to their experiences in their environment.   
In the first five hours of its life the MRL agent does not pursue 
furniture making more than a few times.  However, later in its life 

it may develop an interest in that task and learn the appropriate 
behaviour to perform it.  Thus, when multiple MRL agents are 
introduced into the world, each agent will develop behaviours 
based on their experiences in the world, resulting in a number of 
different characters including blacksmiths, carpenters and 
travellers.   

3.3 Adaptable Behavioural Patterns in 
Motivated Partner Characters 
Another role commonly played by NPCs is that of a partner 
character while the human player is not online or to perform 
repetitive tasks on their behalf.  For example, in Ultima Online 
players can set up vendor characters to sell the goods they have 
crafted.  These vendors stand in one place and player characters 
have to come to them in order to trigger a user interface allowing 
them to buy goods.  While we assume the continued existence of 
the user interface, MRL agents can offer a dynamic alternative to 
these static vendors.   

In this scenario the agent has two sensors: a location sensor and an 
object sensor.  These allow it to sense its x, y and z co-ordinates 
and the objects within a 7 metre radius.  The agent has one 
effector: a move to object effector.  The object sensor can detect 
the smithy, the carpenter’s shop, the mine, the forge, lathe, pick, 
axe and a number of trees as shown in Figure 7.  In a real game, 
there might be human controlled avatars at any of these locations.  
We ran an MRL agent for 2 hours in this scenario.  The actions 
performed by the MRL agent in this time are plotted in Figure 8.  
A legend is shown in Table 2.    
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Figure 7.  The village scenario with additional objects. 

Initially the vendor character was located near the mine and the 
iron.  These two locations became recurrent destinations over the 
course of its lifetime.  During the first hour the vendor initially 
focused its attention on moving between the mine and iron and the 
forge and pick.  Around t=0.2 its focus of attention shifted and a 
new behaviour evolved for moving between the wood and the 
chair.   

Table 2 – Enumeration of agent actions for S 2. 
  Action ID Description 
1 Move to pick. 
2 Move to iron. 
3 Move to forge. 
4 Move to sword. 
5 Move to smithy. 
6 Move to mine. 
7 Move to forest. 
8 Move to wood. 
9 Move to axe. 
10 Move to chair. 
11 Move to lathe. 
12 Move to carpenter. 
13 Move to tree. 
14 Move to Kathryn’s House 

At t=0.6 the agent accidentally tripped over the sword, shifting it 
to a new location.  This caused a flurry of new events to become 
interesting including moving to the forest.   Around t=0.8 a player 
character called Kathryn built a new house next to the iron mine 
as shown in Figure 8.  After a short period of time the vendor  
adapted its existing behavioural patterns and began to include this 
house as a destination in its behaviour. 

The ability of the MRL vendor to focus its attention on different 
destinations has two benefits.  Firstly, the character is more 
realistic as it can move around like a travelling salesperson rather 
than standing in one spot.  Secondly, because the vendor can 
move, its human master is receiving better exposure of his or her 
goods to potential customers.  As the world changes the travelling 
salesperson can adapt its behaviours in response.  This scenario 
could be further extended to allow the MRL agent to sense 
information about the goods purchased from it by human players 
using its user interface.  This would allow it to develop 
behavioural patterns based on its experiences with its customers 
and further improve the vendor service it offers.             

 
Figure 8.  The village scenario after Kathryn has built a 

house. 
 

Figure 8 – Actions performed by a travelling vendor MRL agent. 
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4. CONCLUSION 
This paper has presented motivated reinforcement learning agents 
as a means of creating non-player characters which can both 
evolve and adapt.  Motivated reinforcement learning agents 
explore their environment and learn new behaviours in response 
to interesting experiences, allowing them to display progressively 
evolving behavioural patterns.  In dynamic worlds, environmental 
changes provide an additional source of interesting experiences 
triggering further learning and allowing the agents to adapt their 
existing behavioural patterns in time with their surroundings.  
Furthermore, motivated reinforcement learning allows a single 
agent model can be applied to multiple characters which then 
develop different behaviours based on their experiences in their 
environment.          
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