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Abstract 

 
Agents are systems capable of perceiving their environ-

ment through sensors, reasoning about their sensory input 
using some characteristic reasoning process and acting in 
their environment using effectors.  When one or more 
agents control the objects that comprise a 3D virtual world, 
the result is a dynamic, adaptive environment that changes 
in response to users’ actions.  We have experimented with 
three different agent models for this purpose: a swarm 
model, a cognitive model and a motivated agent model.  
Each of these models differs in the complexity of its imple-
mentation and can thus be used to produce dynamic virtual 
environments of differing behavioural complexity.  This 
paper introduces a schema for characterising the imple-
mentation and behavioural complexity of agent models for 
dynamic virtual environments.  We apply this schema to the 
agent models we have studied to reveal their advantages 
and disadvantages and identify directions for future work.    

   
1. Introduction 
 

A sense of place can be achieved in virtual environments 
by the use of rooms, buildings and other artefacts associ-
ated with physical places.  When the virtual environment is 
networked and multi-user, these places can be used to sup-
port a broad range of activities including communication, 
collaboration and education.   

The focus of many virtual world design platforms has 
been on the visual and interactive aspects of the world, re-
sulting in environments that are largely static.  Dynamic 
behaviour of the 3D objects in virtual worlds is typically 
achieved with simple, scripted behaviours triggered by 
events.  The effort required to implement these simple be-
haviours over wide areas of a virtual world is high as each 
object must be scripted individually.  A major issue in the 
development of virtual worlds is the behavioural complex-
ity of the objects in the world and the complexity of the 
implementation that is required to achieve the behaviours.         

Maher and Gero [3] proposed a way to increase the be-
havioural complexity of dynamic virtual worlds by giving 
agency to each persistent 3D object in the virtual world.  

Agents are systems capable of perceiving their environment 
through sensors, reasoning about their sensory input using 
some characteristic reasoning process and acting in the 
world using their effectors.  Agents are generally imple-
mented using a programming language such as Java or 
C/C++ providing them with the potential for complex rea-
soning processes that produce dynamic virtual environ-
ments of greater behavioural complexity than those with 
scripted behaviours.  Maher and Gero achieved an increase 
in behavioural complexity by using a cognitive agent model 
[3, 4, 6] for the behaviour of the 3D objects in a virtual 
meeting room.  Their cognitive model includes processes 
for reasoning about the world at different levels of abstrac-
tion and a direct communication structure.  It requires pre-
programmed domain specific rules giving it a high imple-
mentation complexity.     

This paper presents two additional models that can be 
used to create dynamic virtual worlds: a swarm model and a 
motivated agent model [2].  The swarm model is an agent 
based alternative to scripted behaviours that reduces im-
plementation complexity.  The motivated agent model also 
reduces implementation complexity but offers the behav-
ioural complexity of the cognitive model.  

Figure 1 illustrates our schema for characterising the im-
plementation and behavioural complexity of agent models 
for dynamic virtual environments and shows broadly where 
each model fits into the schema.  In the following sections 
of this paper we define the terms behavioural and imple-
mentation complexity in more detail then use them to 
evaluate each model.  These discussions provide the basis 
for a more detailed classification of each model later in the 
paper.  We demonstrate the performance of each model 
when implemented in a virtual meeting room scenario.  We 
consider the advantages and disadvantages of each ap-
proach as well as possible future directions for agent mod-
els in 3D virtual worlds. 

 
2. Behavioural Complexity 
 

Behavioural complexity measures the richness of the rea-
soning process that produces the dynamics of a virtual envi-
ronment.  Behavioural complexity can be measured in five  



 
Figure 1.  Broad classification schema for tech-

niques used to create dynamic 3D virtual worlds. 
 

modes: reflexive, reactive, reflective [3], autonomous [7] 
and proactive [8].  Each mode requires increasingly sophis-
ticated reasoning, with reflexive being the simplest.     

Reflexive behaviour is a pre-programmed response to the 
state of the environment – a reflex without reasoning.  Only 
recognised states will produce a response.  This mode of 
behaviour is typically achieved using a scripting language 
to implement behaviours associated with the 3D objects in 
a virtual world.  These scripts define behaviours which are 
triggered by predefined patterns of events. 

Reactive behaviour manifests itself as reasoning about 
responses within a fixed set of goals.  This mode of behav-
iour is achieved by using agents to control one or more ob-
jects in a virtual world.  Agents make changes to the objects 
in the world to work towards achieving goals in response to 
changes in the state of the environment.  Reactive behav-
iour is a consequence not only of the state of the environ-
ment but also of how that state is perceived by each agent.  
Perception may vary as a consequence of experience.   

Reflective behaviour also has a fixed set of goals.  In ad-
dition, it does not simply react but hypothesises possible 
desired states of the environment and proposes alternate 
actions that will achieve those states.  This type of behav-
iour is also achieved using agents.  Reflective agents are 
able to reason about the world at different levels of abstrac-
tion.   

Autonomous behaviour does not simply select goals from 
a fixed set but includes reasoning processes to create new 
goals in response to new situations.    

Pro-active behaviour goes beyond reasoning about goals 
to be achieved and hypothesises possible undesirable future 
states of the environment and proposes alternate actions to 
avoid those states. 

 
3. Implementation Complexity 
 

Implementation complexity is a measure of the level of 
programming effort that is required to produce a certain 

level of behavioural complexity.  Implementation complex-
ity depends on properties of the system architecture such as 
domain dependence and social ability.     

 
3.1. Domain Dependence 
 
 Domain specific systems incorporate modules that tie 
them to a particular environment or problem within an en-
vironment.  Examples of such modules are scripts defining 
the behaviour of a specific object or a set of goals relevant 
to a particular environment.   
 Domain independent systems are comprised of general 
modules that are relevant to a wide range of environments 
and problems.  Domain independent systems have less im-
plementation complexity than domain specific systems be-
cause domain specific systems must be modified each time 
they are to be applied to a new problem or environment.   
  
3.2. Social Ability 
 

When the objects in a 3D virtual world are controlled by 
more than one script or agent there may be a requirement 
for these scripts or agents to communicate.  Implementation 
complexity is affected by the level of communication or 
social ability of the system, with no communication being 
the simplest.   

No communication implies that every script or agent 
functions independently of every other script or agent and 
does not receive any information about their behaviour or 
the region of the environment they modify.    

Indirect communication or stigmergy is communication 
through the environment.  There are two types of stig-
mergy, discrete stigmergy and continuous stigmergy.  
When a script or agent responds to a structural change in 
the environment made by another script or agent it is re-
sponding to discrete stigmergy.  Scripts or agents can 
communicate via continuous stigmergy by depositing 
pheromones.  In nature a pheromone is a chemical sub-
stance deposited by one individual that triggers some be-
haviour in another individual.  In a virtual world, a phero-
mone can be modelled as an invisible 3D object with a type 
and strength.  The type of pheromone determines the be-
haviour that is triggered.  The strength of the pheromone 
determines the time it will take to decay and thus the 
amount of time it will be present to trigger behaviour from 
other scripts or agents. 

Direct communication implies that messages are sent di-
rectly from one script or agent to another script or agent.  
This form of communication has the greatest implementa-
tion complexity.  Smith et al [6] define an agent society as 
an aggregation of agents that share a common connection 
with a virtual world and have some ontological connection 
with each other.  For example, a Floor agent and a set of 
Wall agents might form a society that represents a virtual 
meeting room.  When a group of agents form a society 
there is frequently a need for them to communicate.  Direct  
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communication allows agents to interact with other agents 
by sending messages from the effector of one agent to the 
sensor of another.  This allows agents within a society to 
self-organise without flooding the virtual world with addi-
tional objects or events. 
 
4. Agent Models 
 

An agent is a system that perceives its environment 
through sensors, reasons about its sensory input using some 
characteristic reasoning process and acts upon the environ-
ment through effectors.  This general model is shown in 
Figure 2.  Agent models describe ways to implement the 
characteristic reasoning process of one or more agents.  
Agents using different models may differ in their behav-
ioural or implementation complexity and thus result in dy-
namic 3D virtual worlds of differing complexity.  

 
4.1. A Swarm Agent Model 
 

Swarm intelligence is the property of a system whereby 
the collective behaviours of unsophisticated agents interact-
ing locally with their environment cause coherent func-
tional global patterns to emerge [5].  We investigated 
swarm intelligence as the basis for an agent model in a vir-
tual world with the purpose of determining whether it is 
possible for the objects in 3D virtual worlds to achieve 
globally coherent behaviour without the complexity of a 
structured communication protocol and multiple levels of 
reasoning.    

In our swarm based model, shown in Figure 3, each 
agent has two internal reasoning sub-processes, sensation 
and action.  These processes are facilitated by three struc-  

 
tures, sensors, memory and effectors.  Sensors sense the 
local state of the environment, that is, the environment 
within some small radius of the agent.  This raw data is 
transformed by the sensation process into sense-data struc-
tures more appropriate for reasoning.  Sense-data structures 
incorporate both the most recent raw data and the raw data 
sensed immediately prior to the most recent data.  This al-
lows a swarm agent to reason about changes in its environ-
ment as well as static states.  The action process uses a re-
flexive mode to respond to sense-data by triggering effec-
tors to make changes to the environment.  Behaviours are 
selected by consulting a pre-programmed lookup-table of 
domain specific microrules that is stored in the agent’s 
memory.  Microrules are boolean conditions about sense-
data.  When events in a virtual environment cause a mi-
crorule to evaluate to true a behaviour is triggered. 

We implemented a suite of microrules for reproduction, 
growth, clustering, stigmergic interaction and death.  We 
illustrate the performance of swarm agents using these rules 
with the example of a virtual meeting room implemented in 
the SecondLife (www.secondlife.com) virtual environment.  
In this implementation, agents function as members of a 
society in which each agent controls exactly one object in 
the 3D virtual environment.  There are two Floor agents, 
four Wall agents, four Column agents, four Beam agents, 
two Roof agents, four Chair agents and a Table agent as 
shown in Figure 4. 

Each agent can sense other agents and avatars that fall 
within a radius one and a half times the size of the radius of 
the object that it controls.  Suppose that a small meeting 
room has reached its capacity of three avatars.  One of the 
Wall agents senses the presence of three avatars and con-
structs sense-data corresponding to “the number of people  
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Figure 4.  A virtual meeting room in SecondLife. 

 

 

 
Figure 5.  Global behaviour of the swarm the num-
ber of avatars present increases: Floor, Beam and 

Roof agents expand and Chair agents multiply. 
 
in the room is three”.  The agent then consults its list of 
microrules and identifies that the current sense-data makes 
true the condition on the “grow when crowded” microrule.  
The rule is fired and the Wall agent expands.  Following 
this expansion, one of the Beam agents senses the presence 
of the newly enlarged Wall agent and constructs the sense-
data corresponding to “Wall has a new scale of 1.5”.  The 
agent then consults its list of microrules and identifies that 
the current sense-data makes true the condition on the  

 

 

 
Figure 6.  A swarm can adapt to different situa-

tions without specific programming.    
 
“grow when neighbour grows” microrule.  The rule is fired 
and the Beam agent expands.  This expansion is gradually 
communicated to all agents in the society via this process of 
discrete stigmergy until the entire meeting room has ad-
justed to the avatars’ presence in the room either by ex-
panding (Wall agents) or multiplying (Chair agents) as 
shown in Figure 5. 

While individual swarm agents display only simple, re-
flexive behaviour, the swarm as a whole is able to adapt to 
situations not pre-programmed in microrules.  For example, 
the clustering microrules in our implementation are general 
enough to produce the three situations in Figure 6 where 



 
 
chairs have adapted to different arrangements of the projec-
tor screen, even when there are avatars in the way. 
 
4.2. A Cognitive Agent Model 
 
Maher and Gero’s original agent model [3, 4, 6] is shown in 
Figure 7.  Agents using this model are capable of construct-
ing increasingly complex interpretations of their environ-
ment.  Their interpretations influence their selection of 
goals and actions.  Interpretations are constructed using five 
successive reasoning sub-processes, sensation, perception, 
conception, hypothesising and action.  These processes are 
facilitated by three structures, sensors, memory and effec-
tors.   

Like swarm agents, cognitive agents function as mem-
bers of a society in which each agent controls exactly one 
3D object from the virtual world.  Unlike swarm agents, 
cognitive agents sense the global state of their environment, 
that is, all agents and avatars that fall within the bounds of 
the society.  Sensation transforms raw data from sensors 
into sense-data structures more appropriate for reasoning.  
The perception, conception and hypothesising processes 
each build upon the output of the former to build more ab-
stract interpretations of the environment.  Perception trans-
forms sense-data into patterns called percepts that are used 
as the building blocks for concepts about recurring situa-
tions.  Conception is the process of recognising concepts 
and is the basis for hypothesising desired situations.  The 
hypothesiser identifies mismatches between the current and 
desired situations and reasons about which goals should be 
pursued to eliminate or reduce the mismatch.   

The action process reasons about sense-data, percepts, 
concepts and goals and selects a behavioural mode corresp- 

 
Figure 8.  A virtual meeting room in Active Worlds.  

(Picture from Smith et al [6]). 
 

 
Figure 9.  Interaction diagram showing communi-

cation within the virtual meeting room society 
when a new avatar enters a full room. (Picture 

from Smith et al [6]).   
 
onding to the complexity of the current interpretation.  Re-
flexive mode responds to sense-data with pre-programmed 
actions.  Reactive mode reasons about both sense-data and 
percepts to produce actions.  Reflective mode uses the con-
cepts understood by the agent to hypothesise possible ex-
ternal states and propose alternate goals to achieve them.   

Communication within the cognitive agent society uses 
the Contract Net negotiation protocol, a form of direct 
communication, in contrast to the indirect communication 
used by swarm agents.  Agents with problems to solve 
broadcast a call for solution proposals to all agents in their 
society.  Agents that believe they can satisfy the call answer 
with proposals.  One agent is then awarded a contract to 
initiate their proposal.  

We illustrate the performance of this agent model using 
the example of a virtual meeting room implemented in the 
Active Worlds (www.activeworlds.com) virtual environ-
ment.  This meeting room consists of a Room agent plus a 
set of Wall agents as shown in Figure 8.  The Room agent 
has a sensor that can sense the presence and location of 
avatars.  Suppose that the meeting room has reached its 
capacity of 20 avatars when Greg enters.  The room’s sen-
sor constructs sense-data corresponding to “Greg is in the 
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Figure 7.  The cognitive agent model. 
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room” and the perception process interprets this with the 
percept “the number of people in the room is 21”.  The 
conception process uses forward chaining on percepts and 
expectations to recognise that the room is too small.  The 
hypothesiser then identifies two goals that can reduce the 
mismatch between the current state and the desired state of 
the world from a fixed set of domain specific goals, such as 
“make the room bigger” and “eject one citizen”.  It selects 
the goal to make the room bigger.  The action process rec-
ognises that it does not have an effector that can make the 
room bigger so it sends a message to the society to call for 
proposals to achieve the “make the room bigger” goal.  An 
interaction diagram that illustrates how this inter-agent 
communication propagates through the society is shown in 
Figure 9. 

While the internal processes and communication re-
quirements of a swarm agent are significantly simpler than 
that of a cognitive agent, both cognitive agents and swarm 
agents incorporate domain specific components.  Cognitive 
agents incorporate rules with different levels of abstraction 
while swarm agents incorporate microrules at a single level 
of abstraction.  However, cognitive agents are more easily 
applied to new problems by defining a new set of goals.  
Swarm agents require the definition of carefully chosen 
microrules to achieve the same behaviour. 

 
4.3. A Motivated Agent Model  
 

A motivated agent model has the potential to achieve be-
havioural complexity without the need for domain specific 
rules.  Motivation is that which gives purpose and direction 
to behaviour and motivation is the drive that arouses an 
organism to action towards a desired goal [1].  Purpose is 
simply a synonym for goal so we can say that motivation is 
that which creates goals and that which stimulates action 
towards goals, the two requirements for autonomy.  The 
motivated agent model [2] is an approach to building 
autonomous agents that are influenced by a domain inde-
pendent motivation process rather than pre-programmed 
domain specific goals or microrules.  In place of such influ-
ences, these agents are motivated to generate their own 
goals by identifying interesting events in their environment.  
In addition, they are motivated to solve their goals and en-
capsulate the knowledge acquired while solving goals as 
new behaviours.   

The primary reasoning components of this model, shown 
in Figure 10, are sensation, motivation, learning and action.  
Sensation transforms raw input from sensors into sense-
data and event structures more appropriate for reasoning.  
Sense-data structures represent static states, while events 
represent the difference between two states.  These struc-
tures allow motivated agents to reason about both the 
changes in their environment and the static states they 
sense.  The motivation process identifies interesting sense-
data and events using the domain independent intuition that 
rare occurrences are interesting.  Interesting occurrences are 

used as the basis for new goals.  The motivation process 
priorities goals so that the agent can direct its action to-
wards the most important goal.  Learning encapsulates 
knowledge learned while solving goals as new effector se-
quences that can be reused if similar goals are identified in 
the future.  Action chooses effectors to fire to further the 
agent’s progress towards its most important goal.  Moti-
vated agents use a reflective mode of reasoning to create 
goals.  They use a reactive mode of reasoning to respond to 
sense-data and events using reinforcement learning to 
choose actions that further progress towards their highest 
priority goal.  Unlike agents that use the previous two mod-
els, agents that use this motivated model do not function as 
members of a society.  Instead, a single agent controls a 

 

 

 
Figure 11.  A virtual meeting room simulated in 

Java 3D. 
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Figure 10.  The motivated agent model.



 
Figure 12.  Agents experimenting by modifying the 

scale and position of the Wall and Floor objects. 
 

 
Figure 13.  Agents learn to cause interesting 

events to occur, such as this room expansion 
which causes the number of avatars using the 

room to increase. 
 
number of objects from the 3D virtual world.  Motivated 
agents have no communication mechanisms. 

We illustrate the performance of this agent model using 
the example of a virtual meeting room implemented in a 
simulated Java 3D virtual environment.  In this implemen-
tation, there is a single agent controlling a Floor and five 
Wall objects as shown in Figure 11.  The agent can sense 
the scale and position of each Floor and Wall object and 
whether there are avatars nearby.  The agent can modify the 
world by modifying the scale or position of objects as 
shown in Figure 12.  Avatars will use the room if it satisfies 
the requirements of visual privacy, that is, if all Wall and 
Floor objects are scaled so that there are no gaps between 
them as shown in Figure 13.  Larger groups of avatars will 
tend to favour larger rooms.  The agent identifies that, in its 
experience, increases in the number of avatars in the room 
are rare. These rare events are interesting to the agent 
which creates goals to learn how to achieve them. Over 
time the agent develops behaviours that enable it to influ-
ence the number of avatars that will use the room.  For ex-
ample the following “expansion” behaviour will increase 
the number of avatars likely to use the room:   

 
[expand-rear-wall, move-right-wall-right,  
expand-front-right-wall, expand-front-left-
wall].   

 
Unlike agents using the cognitive and swarm models, moti-
vated agents will not necessarily react to more avatars en-
tering the room, however if they perceive changes in the 
number of avatars to be interesting they will be motivated 

to learn how to create bigger rooms in order to entice larger 
groups to use them.  The motivated agent, being more do-
main independent is easier to implement than the swarm or 
cognitive models.  In addition, because the motivated agent 
is not limited to a fixed set of goals or microrules it is more 
capable of responding to a wider range of new situations 
that may arise.  However, because the motivated agent is 
autonomous and has the freedom to create its own goals, it 
is more difficult to predict exactly how it will respond to 
new situations.     

  
5. Concluding Remarks 
 
 While agents are able to increase the behavioural com-
plexity of virtual environments and reduce the work re-
quired to implement those behaviours, the use of agent 
models in virtual environments is ultimately limited by the 
technical attributes of the virtual environment they inhabit.  
The three agent models described in this paper were im-
plemented in three different virtual environments.  Chrono-
logically, the cognitive agent model was implemented first 
in the Active Worlds environment.  Active Worlds exposes 
an API which allows agents to be written in programming 
languages such as C/C++ or Java.  The Active Worlds SDK 
was sufficient for implementing cognitive agents which 
make only a few environmental changes in response to their 
goals.  However, the SDK was not robust enough to deal 
with the thousands of commands required for a swarm to 
function or for a motivated agent to learn.  It tended to 
crash after agents had performed only a small number of 
actions. 
 Active Worlds’ lack of robustness prompted us to use 
Second Life for our swarm agent experiments.  We imple-
mented the swarm agents in Linden Scripting Language 
(LSL) which has much of the functionality of a full pro-
gramming language.  Two notable exceptions are a limit in 
the size of a script file and built in server side delays on 
certain built-in global functions making simulations very 
slow.  The LSL script length prompted us to implement 
motivated agents in Java.  While these agents could have 
communicated with Second Life via XML-RPC, speed is-
sue and limits on the amount of data that can be communi-
cated in this way prompted us to implement a simple Java 
3D virtual environment for motivated agents to learn in.   
 While the use of agent models in virtual worlds is limited 
by the robustness of the environment and the richness of the 
scripting tools available, the benefit of using an agent 
model in place of scripted behaviours is that the agent 
model provides a generalised approach that need only be 
implemented once then applied, possibly with small modi-
fications to a number of agents, controlling multiple ob-
jects.  This provides coherence in the implementation of 
object behaviours and means that dynamic behaviour can 
be achieve over large areas of 3D virtual worlds more eas-
ily than using scripted behaviours.  That said, we have seen 
that some agent models are easier to use or provide greater  



 
Figure 14.  Detailed classification schema for 
techniques used to create dynamic 3D virtual 

worlds. 
 
behavioural complexity than others.  Our findings are 
summarised in Figure 14. 

From Figure 14 we see that using the swarm agent model 
gives us the benefit of a single model that can be applied to 
a range of objects, that is, it is more domain independent 
than scripted behaviours.  The main difference between the 
cognitive agent model and the swarm agent model is that 
the cognitive model includes processes that identify pat-
terns and concepts from raw sensor data and use these to 
determine reactive and reflective behaviour.  In contrast, 
the swarm model reacts directly to sensor data according to 
a fixed set of behavioural rules without building a hierarchy 
of labels describing the sense data.  The cognitive model 
has greater initial implementation complexity due to its 
direct communication requirements, however once the ini-
tial implementation is done creating new agents for new 
environments or problems is simply a matter of creating a 
new goal set. 

The motivated agent model shows a way to further re-
duce the implementation complexity of the cognitive agent 
model.  Rather than specifying enough knowledge in the 
perception, conception and hypothesiser parts of the model 
to identify domain specific patterns and goals, it uses the 
idea of motivation to allow agents to develop their own 
goals and behavioural patterns according to their experi-
ence in the world.  However, in doing this the behaviour of 
the agents becomes less predictable as they have the free-
dom to create their own goals rather than selecting from 
fixed set of pre-programmed goals.   

One possible solution to this problem lies in the use of 
the pro-active behavioural mode.  Pro-active agents do not 
merely react to new situations or hypothesis desirable fu-
ture situations, rather they can anticipate future undesirable 
situations and act in advance to avoid them.  None of the 
models discussed so far uses this mode.  However, if the 

motivation process of a motivated agent incorporated the 
ability to act pro-actively to avoid situations in which other 
avatars need to rearrange the environment then the moti-
vated agent would tend to learn tasks that anticipate the 
needs of other avatars and its behaviour would thus become 
more predictable.  The ability to anticipate the needs of 
human controlled avatars is a step towards intelligent envi-
ronments and thus a possible focus for future research.   
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