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KNOWLEDGE DISCOVERY IN ARCHITECTURAL CAD DATA

Abstrad.

Knowledge discovery and data mining tedhniques have the potential to find petterns in very
large sets of data. Applying these techniquesto design data has two problems: the volume and
complexity of the source data, and the discovered knowledge itself. A result is that existing
algorithms may not be mmputationaly feasible aad in any case may not prodwe of
themselves, results that are of interest to a designer. In this paper we first demonstrate the two
problems above by applying data mining techniques to architedural CAD data. We then
reconsider the role of data mining for knowledge discovery as fadlit ating the re-presentation
of source design datain ather forms such that relationships are reveded to the designer that
would na otherwise be visible. To investigate this we alopted a framework for knowledge
discovery combining conseautive complementary strategies, and applied it to the same
architedural CAD data.

Keywords. data mining, CAD data, knowvledge discovery, design
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1. Digital design representations and data mining

Computational suppat and dgital design representations srve different purposes during different
phases of a design process Consequently, it is not surprising that digital design representations gan
the whale variety of today's multimedia computing, as shown in Figure 1.
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Figure 1. The scope of design data from a data mining point of view

Different forms and layersin dgital design media vary with resped to structuring and richnessof the
design data that they hald. Design damain knowledge is coded in a variety of machine readable forms
as eledronic manuals and references, projed databases, CAD drawings and database, images and D
models, design communication transcripts and adivity records.

e structure-valued data, including: (i) attribute-value pairs; (ii) relational tables; (iii) objed-
oriented data structures;

o wedly structured data, including: (i) textsin free table format or structured communication
records; (iii ) vedor graphics, such as CAD drawings, oljed-oriented images;

e raw data, including: (i) raster images of phaographs, sketches; (ii) animated images; (iii)
audio andvideo data;

e links data, including: (i) hyperlinks within we&kly structured data; (ii) links between
structure-valued comporents and elements of weekly structured data; (iii) links within
structure-valued data; (iv) information abou the sequence of visited links.

Data mining as a process (Fayyad, Piatetsky-Shapiro & Smyth 1996 is part of what is cdled



knowledge discovery - an interadive and iterative processof discovering useful knowledge from the
patterns extraded by the data mining techniques. The knowledge discovery processconsists of three
main pheses. 1) pre-processng, 2) data mining, and 3 paost-processng. Data mining, the centra
phase, involves the gplicaion d statisticd and madine learning algorithms with which to extrad
patterns in data. However, succesgul knowledge discovery requires that significant amourts of eff ort
must be goplied to the other phases.

The pre-procesdgng phase deds with data preparation. Tedhniques of sampling, feaure seledion
and feaure construction ded with problemsin data quality such as unfill ed database fields or records,
atribute noise and errors. In ou case arors extend to the aea of text errors, missng images or
drawings, errorsin the transcripts of design communications. The most obvious part of pre-processng
isin transforming raw data into whatever format is required by the data mining algorithms. In design
knowledge discovery tasks this is an extremely important stage, due to the variety of the data formats
(usualy nontable), and the necessty to deploy awide variety of data mining techniques to these data.
High data volumes and cata dimensiondlity is a feaure of knowledge discovery tasks that are often
not seen by the designers of the underlying madine learning and statisticd algorithms.

In the post-processng stage the data is interpreted and visualised. This has a feedbadk effed on
data mining algorithm seledion and application. For example, do the results neal to be human
interpretable or not? If yes then a dedsion treemay be seleded, if no then a neura network may be
seleded. Post-processng is also concerned with evaluation: are the results datisticdly significant and
reliable?Are they interesting with resped to the goals of the projed?

The importance of the pre-processng and past-processng phases for knowledge discovery from
design data is underlined by the nature of design “knowledge”. What exadly is denoted by design
knowledge and haw it is represented are major isaues in design computation research. Financial and
business data ae usualy well-structured in olbjed-oriented o relational attribute-value
representations. Producing a knowledge source to be the input to a data mining algorithm is roughly
equivalent to de-normalising a database schema into a flat table. The rows of such atable ae design
cases and data mining algorithms look for combinations of repetitionsin attribute values, as shown for
example in Figure 2. Such a representation makes almost explicit the asociations between dff erent
attributes of the case.
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Figure 2. “Flattened” database & the sourcefor data mining

It would be convenient if such an approach to the compasition o knowledge sources worked in the
mining of design data too. However, the cntent of the table cdls would be heterogeneous as the
source data includes drawings, product descriptions, 3D models, design communications, and grojed
management data. What exadly shodd be mined, and hov we shodd combine aad uilize the
outcomes of different data mining algorithms performed over various comporents of design data, are
guestions that do nd have trivial answers.



KNOWLEDGE DISCOVERY FROM ARCHITECTURAL DATA 5

Until the ealy 1990s, rule-based representations were anongst the most popuar formalisms in
artificial intelli gence & they were seen to be “understandable” bath by humans and computers. They
were naturally adopted into a field of data mining that at that time was in its ealy days. Rule-based
representations can be used for further reasoning, explanation d the discoveries, formulating goals
and reasoning chains. Some other representation schemata may have computational advantages but
can be difficult for humans to understand. A trained neural network, to take an example, is capable of
computing output values from the inpu values that it is updied with, bu it can nd provide aly
meaningful explanation d how it is computing thase values.

So, we have two problems regarding design data which make their applicaion to data mining and
knowledge discovery difficult compared to the domains normally considered: the volume and
complexity of the source data, and the discovered knowledge itself. A result is that existing
algorithms may not be computationally feasible and in any case may not prodwe, of themselves,
results that are of interest to adesigner. The gproach we aopt has originsin the field of psychaogy.
Von Glasersfeld, describing Piaget, distinguished representation from “re-presentation” so as to
emphasize the cnstruction d meaning of an oljed. The processof re-presentation in humans takes
items which are cnsidered given and coordinates them as content into a new form, with the resulting
products being avail able & given in some future process(von Glasersfeld 1995.

The gproach canvassd in this work, then, is to view our goal of knowledge discovery on design
data & fadlit ating the re-presentation  source design data in ather forms such that relationships are
reveded to the designer that would na otherwise be visible. To investigate this we aloped a
framework for knowledge discovery combining conseaitive momplementary strategies, and applied it
to ared world design data (Simoff and Maher, 1999. The strategies were:

1. Data-driven exploration, where we do nd spedfy what we ae looking for before starting to
examine the case data. The result of this dep is building of an initial set of patterns that extend a
priori knowledge and allow a refinement of the goals of the knowledge discovery process For
example, in the text analysis of a cae library of design descriptions we started with finding the
frequencies of word occurrencesin the text. As aresult we build an initial vocabulary — the initial
set of semantic patterns that can be refined to become the basis for the formal semantic models for
indexing and adapting the design cases (Simoff and Maher, 1998H.

2. Hypothesis- or god-driven exploration, where we initially spedfy what we ae looking for (i.e.
we formulate ahypothesis), which is either refined duing the exploration, partially or completely
reformulated or finally rejeded. This corresponds to the dasdcd maadiine learning approach. The
hypoathesis for this dage may come from domain knowledge or from the output of the data-driven
exploration stage. For example, we spedfy ontology based on the initial vocabulary and the
information model of the design data. This can be viewed as a hypaothesis for a dassfier treein
the domain. Then the ontology is modified acording to derived co-occurrences, concordances
and the results of correspondence analysis of the text in the cases.

2. Knowledge sources and strategies for data mining

In ou previous work on design data mining (Maher and Simoff, 1998 Simoff and Maher, 200Q we
considered two types of source dataa a hypermedia cae library of buildings
(http://www.arch.usyd.edu.au/kcdc/caut) and ordine mnversations in coll aborative design sesgons. In
both of these sources, the data was treded as text and the data mining algorithms relied onvarious




text analysis approaches. These two data sources were developed in the University as part of our
teading and reseach in computer suppated design.

In the arrent study we looked at the data sources developed in an architedural pradice
Spedficdly, we considered asingle achitedural projed, with datataken from the foll owing sources:

1. ArchiCAD archive of ahospital.
2. Briefing database, containing requirements that lead to the dove CAD archive.

In this work the CAD data was the target of the data mining algorithms, with the briefing database
being used to generate the room names and caegories from which classlabels were generated. The
entire CAD archive and the briefing database were too large to consider, so we reduced the data to
information abou the rooms including the type, the furniture and equipment and any attributes that
were stored in the CAD database. We extraded the relevant data from the CAD archive and pu itina
relational database and then used SQL queries to oltain the foll owing data:

1. List of Hospital Planning Unit (HPU) codes, such as for “emergency care”, “surgicad ward”,
“medicd ward”, “maternity” and “catering”.

2. List of standard furniture and equipment.

3. Ligt of the dtributes for ead required room. Each row corresponced to ore room and
contained attributes such as name, code, location, dmensions and equipment.

ArchiCAD models are aonstructed using objeds like wall s and doas that are conceptually famili ar
to architeds. Zones with pasition, size and a cntained set of objeds denote rooms. The implicaion
of this for knowledge discovery is that these mwnceptual objeds aready exist in the data and thus are
not themselves a useful goal. This contrasts with pattern matching and data mining techniques on
vedor images where discovering the conceptual objedsisthe goal (see for example, (Nagy 2000).

In ArchiCAD, the standard zone list contains the dtributes iown in Table 1 for ead room, with
aseondzonre list containing the mntents of ead room.

Table 1. Attributes of azone or “room” in ArchiCAD

Attribute Type

ZoneStoryName String
ZoneName String
ZoneHeight Numeric

ZonePerimiter Numeric
Surround/Nall Surface Numeric
MeasuredArea Numeric
TotalDoorsSurface Numeric
TotalWindowsSurface Numeric
ZoneCategoryCode Numeric
ZoneCategoryName String
Wall sAlongPerimeter Numeric
TotalDoorsWidth Numeric
TotalDoorsWidth Numeric
NofAll Corners Numeric
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| NofConcaveCorners | numeric |

The dtribute names dhoud be self-explanatory except perhaps for ZoneCategoryCode and
ZoneCategoryName. A zoneis an aggregation o spatial regions that have asimilar function, and zone
cdegories are the asgnment of zones to functional categories chasen by the designer. Examples of
zone cdegoriesinclude “room”, “circulation”, “office” and “plant”.

Three strategies were followed. The first was a data driven exploration d the data set. A data set
was ohtained from the CAD data and was pre-processed into the form required by the data mining
padkage. Various algorithms were then runin an attempt to investigate the structure of the data andto
uncover any underlying patterns in the data.

The seand strategy was a goal driven ore. The two goals used were to attempt to determine data
patterns based onroom topdogy and room content. Data sets describing the position d rooms in the
hospital and the contents of rooms were obtained and the dgorithms run again. The dasslabel used
on supervised algorithms was room type and was derived from the briefing database.

Finally, we dedded to customize atechnique based onthe Activity/Spacemoded (Maher, Simoff,
and Mitchell, 1997. This is the “re-presentation” view of knowledge representation that was
introduced ealier. The is to enable the presentation d the design to the designer in a different form
such that patterns and relationships that may naot have been apparent in the CAD data become so.
Rather than ou computational algorithms attempting to present mined knowledge & a finished
product, we divide “knowledge discovery” into (i) clasdficaion and visualization tasks, and (ii)
interpretation tasks. The first of these then is computational and is based on the Activity/Space
Ontology. The latter relies on adesigner and their domain knowledge.

The data mining algorithms were run undxr WEKA (Frank et al. 2000 onaLinux datform. Asthe
data originated from MS Windows appli cations, platform independent representations that were eaily
manipulatable were required. This included XML dumps of the SQL queries and verticd bar
delimited ASCIl dumps of the ArchiCAD listings. Data deaning and dbta transformation, from these
formats into the ARFF format required by WEKA, used standard Linux/Unix utiliti es along with Java
XML and XSL tods from Apache (The Apache Software Foundation 2000.

3. An Exploration of the Data

3.1 THE NATURE OF OUR DATA

One of the key results from computational learning theory isthat of Vapnik-Chervonenkis dimension.
Consider leaning a dassfier T:S —>H from a sample space S to an hypothesis paceH. The VC
dimensionisthe largest set of examplesthat can be completely fit by H (Shavlik and Dietterich 1990,
where H completely fits a set of samples if thereisaways an h< H consistent with any classlabeling
from the samples. If the number of training samples substantially exceals the VC dimensiontheniit is
likely that any hypathesish € H consistent with the examplesis adually a good approximation o f. If
the number is lessthan the VC dimension then f is unlikely to classfy new samples corredly. For
example, the VC dimension d axis-parallel redanglesin ad dmensional red spaceis 2d (Blumer et
al. 1989.

Hausder (1988 uses this and Valiant's leaning framework (so cdled PAC leaning), to construct
results of the minimum number of independent random examples of a target concept on an instance
spaceS defined by N attributes. Take a example hypotheses thase that are simple @njunctions (in



conjunctive normal form, or CNF). If we let, for example, the acaracy and confidence bound both
be 0.05then of the order of O(425 + 130N) independent randam samples of the target concept are
required such that, with probability at least 0.95, we ca either produce aCNF hypathesis with at
most error 0.05 @ be told that the hypaothesis is not CNF. What this means is that even when mining
for very simple mncepts, the number of sample instances necessary increases dramaticaly with the
number of attributes. Thisiswhy data sets normally used in data mining are “tall and thin”, i.e.
have lots of instances and few attributes.

In our CAD data thisis naot the cae, and even the few attributes described in the previous dion
were ather numeric or strings. Depending on the target concept we may nat be @le to oltain enough
instances from within a single achitedural projed — our data is better characterized as being
“short and fat”.

The obvious resporse to this is to look for more data from other architedural projeds, which in
our study would be from other hospital designs. However underlying leaning theory is a requirement
that samples be taken from the same probability distribution. Intuitively this requirement means that
we shoud take samples correspondng to the same mncept. To do dherwise may result in a dassfier
that is datisticdly valid bu otherwise of dubious meaning. Thus to sample acosstwo architecural
designs A and B so asto determine stylistic patterns, say, would require that A and B were ejuivalent
in terms of size, scde, functionality, style aad so on. Even assuming that such knowledge was
available from design experts, using that knowledge to justify sampling aaoss designs © as to
uncover patterns aaossdesignswould be a cae of circular reasoning.

3.2 ASSOCIATION RULE MINING

As afirst passat knowledge discovery involved inducing associations we ran the Apriori asciation
rule leaning algorithm on the ArchiCAD data set prepared as described in sedion 2. As Apriori
requires nominal attributes, a minimum description length discretisation filter was used as a
preprocessng stage. The zone cdegory was used as a dass label on this filter as the basis for
transforming cortinuows attributes into a set of intervals. The set of intervals then served as an
enumeration for Apriori resulting in large numbers of rules such as these:

(confidence=100%)

ZoneHeight = All A
TotalWindowsWidth <0 = TotalWindowsSurface < 0

(confidence=98%)

ZoneStoryName = “Level 1” A
5.32 < MeasuredArea < 23.18 A
ZoneCategoryName = “Room” A

5.85 < WallsalongPerimeter < 19.45 = 9.56 < ZonePerimeter < 21.95

Other trials based onthe mntents of ead room were performed so as to dscover which oljeds
normally reside together in similar classes of room. The aciation rules that resulted were no more
interesting than those shown above. The mined rules have high confidence but that does nat make
them interesting. We would exped that if total window width in a room is zero then there would be
zero window surface aea This ill ustrates a problem with association rule leaning: we do nd just
require those rules with the highest confidence we desire rules that are “interesting”. However
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asciation rule leaners generaly find al association rules and then return those with the highest
confidence measure.

This is a known property of assciation rule leaners (Bayardo & Agrawal 1999. Bayardo and
Agrawal (1999 claim that statistica metrics sich as suppat, confidence, entropy and XZ value ae
measures of “interestingness’ and that using such measures can lea to efficient mining of rules. We
believe that such measures may leal to statisticdly interesting rules, bu that to aoquire rules that are
interesting to a domain expert requires omething else. This ssmething else is, we believe, based on
domain knowledge, usualy through preprocessng or through dumping lots of rules and then past-
processng them. Indedl this is often dore implicitly and withou adknowledgement, with an attribute
set and algorithm being tail ored to suit a spedfic goal prior to running the learning algorithm.

3.3 SUPERVISED CLASSFICATION

A number of classfiers were induced onthe CAD data set. For the dasslabel, the briefing database
gueries were used to transform the room name on ead instance into ore of the following: surgery,
recovery, Uiliti es, services, bathroom, corridor, consulting, reception, and aher. Clasdfiers were then
induced using 10-fold crossvalidation.

ZoneCategoryCode <= ZoneCategoryCode > 1

MeasuredArea <= 6. MeasuredArea > 6.2

ZoneCategoryCode <= ZoneCategoryCode > 0

WallsAlongPerimiter <= 7 WallsAlongPerimiter > 79

SurroundWallSurface <= 242.

SurroundWallSurface > 242.89

NofAllCorners <= NofAllCorners > 5

services other other

SurroundWallSurface <= 239. SurroundWallSurface > 239.93

reception surgery

Figure 3. Induced dedsiontreefro haspital data. Part of the treeis shown expli citly as nodes and
leaves, the remainder as compressd green triangles. Red nodes are dedsions, blue ae dasslabels.

As an example, Figure 3 shows part of a probabili stic dedsion treeinduced using Quinlan's C4.5
algorithm. This tree was generated from inside the meta-classfier AdaBoostM1, with C4.5 guning
branches of confidence lessthan 23%. The boacsting meta-classfier runs the treeinduction algorithm
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over anumber of trials and aweighted voting scheme is used to assemble the final clasdfier. Thistree
contains 43 led nodes for the 9 classes, and it ill ustrates one of the @mmmon problems with dedsion
treeinduwction: fragmentation. Indeed, running C4.5 alone and without pruning results in a treewith
80 led nodes and a lower clasdfication acarracy. Crossvalidation statistics siowed that 93.9%6 of
instances were mrredly classfied and classficaions were shown to be strongly diagonalised when
displayed as a onfusion table. The results also reinforcethe ealier comments abou the nature of our
data. A single achitedural design may not contain enough instances to suppat full generalization,
and sampling acossdesigns may not be suppatable.

As another example, consider a model treethat was constructed. Instead of inducing a symbalic
classfier that maps from the dtribute spaceonto an enumerated set of classlabels, we leaned the
predictor of a numeric atribute. For ill ustration puposes we used the model leaning algorithm M5'
to lean a predictor of the numeric atribute MeasuredArea The result is a small dedsion tree (the
“tree” part, as rown in Figure 4) with an equation at ead led with which to cdculate the value of
the dtribute (the “model” part).

ZonePerimiter <= 20 ZonePerimiter > 20
Modell
ZonePerimiter <= 54 ZonePerimiter > 54
ZonePerimiter <= 30.9 ZonePerimiter <= 30.9
ZonePerimiter <= 114 \ ZonePerimiter > 114
Model2 Model10 Model11l

roomType != (surgery OR utility

OR reception OR other, roomType = (surgery OR utilit

OR reception OR other;

ZonePerimiter <= 46.4 ZonePerimiter > 46.4 ZonePerimiter > 38.2

ZonePerimiter <= 38.

Model3 Model7
NofCorners <= 13,3 NofCorners > 13.5
NofCorners <= NofCorners > 5
Model6 Model2 Model2
TotalDoorsSurface <= 28,2 TotalDoorsSurface > 28.2
Model4 Models

Figure 4. Model treefrom hospital data

To use the dasdgfier we proceeal as for a dedsion treeuntil we read a led. We then apply the
equation referenced by that node. Thus the euation which cdculates the target attribute
MeasuredAreafor instances with ZonePerimeter < 20is the eguation labelled Model 1, which is

MeasuredArea = 6.65
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.318 * R1

.442 * R2

.607 * RS

.0522 * ZonePerimeter

.0033 * SurroundWallSurface
.0356 * TotalDoorsSurface
.00373 * TotalWindowsSurface
.0832 * ZoneCategoryCode
.0111 * TotalWindowsWidth
.0532 * NofAllCorners

+ 4+ +

+ +
O0OO0OO0OO0OO0OO0OO0OOO

R1 =1 & roomType=corridor v
roomType=other v
roomType=surgery v
roomType=utility v
roomType=reception
R1 =0 Otherwise

R2 = 1 P roomType=other v
roomType=surgery v
roomType=utility v
roomType=reception
R2 =0 Otherwise

R3 =1 = roomType=surgery v
roomType=utility v
roomType=reception

R3 0 Otherwise

For most of the dasdfiers generated the dasdficaion acarracy was acceptable if appropriate
induction parameters and meta-classfiers sich as AdaBoostM 1 were used. Indeed, a 100% acairacy
may be unacceptable in some drcumstances as it may indicate that it is not generalizing. The size of
the C4.5 dedsiontreethat resulted above is slitable for computer use & a dassfier but atreewith 43
led nodes is nat easly displayable to o understandable by a user. This problem of visualization is
ancther known problem in data mining tasks (Hofmann, Siebes & Wilhelm 2000, Han & Cercone
2000. If the goal of an induction task is a machine leaning one then provided that the dasdfier is
efficient and acairate enough to be used on a target platform, all is well. However, if the task is
knowledge discovery then the results $roud be understandable, bah in content and in scope of
results, by appropriately knowledgeeble humans. Furthermore, as with the asciation rules, it is not
clea how interesting such classfierswould beto a user.

4. Employing aconceptual model to facili tate knowledge discovery in design data
One of the primary goals of knowledge discovery is to convert raw data into “knowledge”. The

number of abstradions onanortrivial set of observations is unlimited. Which abstradions are chasen
isaresult of learning biases: limiti ng the representational |anguage to those terms of interest, li miting



12

the order in which alternatives are examined, and so on. Indeal, as generalizing from a set of
observationsis nat deductively valid (Langley 1996, withou learning biases a system would have no
reason to chocose one astradion over ancther and leaning would na be posshble. Thus, for data
mining to work must require that some domain knowledge be gplied, even if thisis not recognised as
such explicitly.

Pazzani (2000 describes knowledge discovery as a process of interadion ketween a data miner
and a domain expert. Feedbadk on the novelty, utility and uncderstandabilit y of mined solutions lead to
adjustments in data format and agorithm. For the techniques ill ustrated to be useful we shoud
consider using domain knowledge. Domain knowledge can be used in the foll owing ways:

Preprocessng stage

This is either unsupervised o supervised. Unsupervised includes techniques like fedure
seledion, feaure onstruction, discretisation, and clustering using some metric. Supervised
involves either model based techniques (explicitly using domain knowledge), or providing the
classes uponwhich discretisation and so onwork. Further, dedsions like whether to sample a
database or not, and hav to structure the data wuld be influenced by knowledge of the
applicaion damain.

A priori theory in data mining

Instead of starting with preprocessed data and then applying seleded algorithms to urcover an
underlying theory, we start with some kind d a priori theory and use the database to refine and
extendit.

Inductive bias

This is either a representation las or a seach hias. As an example of a representation biasis
effeding the choice of algorithm or representation based on danain knowledge. Examples of
seach hias are dfeding instance seledion ader, encoding templates that constrain a seach,
and wsing user feadbadk during seach. For this work the primary driver of inductive bias
shoud be the underlying goals of the knowledge discovery task in this projed.

Considerations abou the representation d discoveries are dso extremely important if we need to
incorporate discovered knowledge badk into a design suppat system. Our propcsa is to use a
conceptual model, a predefined knowledge representation schema, cgpable of acommodating
different discoveries and presenting them badk to the designers in an integrated form. Simoff and
Maher (19980 proposed a semi-automatic procedure for deriving terminologicd taxonamies by text
mining of the case datain a hyper-media design case library. The conceptual model, aroundwhich the
cases in the library were structured, provided the badkground knowledge in this method. The same
structure can be used to acommodate extraded knowledge. Initially, Simoff and Maher (19983)
propcsed a knowledge representation schema, ortology in this case, for multimedia data mining for
design information retrieval.

If we take discovery to be to “divulge, reved, disclose ... knowledge” (The Oxford English
Dictionary 1989 and take knowledge to be justified belief, then we might validly consider some
methods which do na attempt to generalize over a data set to be knowledge discovery. For example,
re-presenting CAD data in a form that reveds relationships to the user that would na otherwise be



KNOWLEDGE DISCOVERY FROM ARCHITECTURAL DATA 13

visible fadlit ates knowledge discovery on the part of the user withou such appli cations themselves
performing any inductive or statisticd generali zations explicitly.

In this work, the formalism that is used is based onthe Activity/Spaceconceptual model, proposed
by Maher, Simoff and Mitchell (1997 and further elaborated in a design ortology by Simoff and
Maher (1998. Activity/Spaceontology makes explicit the representation d the required functionality
and resulting spatial arrangement and to some extent suppating structure in an architecural design.
Building design knowledge, then, is either knowledge of adivity (required functionality) or spatial
knowledge (redized structure).

Figure 5 ill ustrates the structure of an adivity/spacemodel. Above the thick horizontal line is an
adivity hierarchy; below the line is a mrrespondng space hierarchy. An adivity is “a purposeful
adion, whaose performance requires a particular amourt of space time and an oljed that performs
this adivity” (Simoff & Maher 19983). For our data set the high level adivities are cdled HPUs and
their requirements come from the briefing database. Examples include amergency care, surgery,
medicd ward, maternity and caering. Further, amedicd ward requires the fadlitation d lower level
adivities sauch as providing for a patient bedroom, waiting by visitors, storing of linen and equipment,
and so on.A space ating as a bedroom then requires an appropriate spatial layout and set of objeds
for deging, laying, reading, eding, getting out of bed, and so on. Thus the requirements for a
building can be expressd as an adivity hierarchy. Similarly, a spatial model of a designed building
can be expressed hierarchicdly based ontopdogy, or ona dassficaion d the adivities suppated, o
bath.

Requirements
Database J7

Required ‘ ‘ ‘ ‘ ‘ ‘
HPUs

Required ‘ ‘ ‘
Rooms

Furnishings

Required ‘ ‘ ‘ ‘
& Equipment

Activities

Space

Designed
Rooms

Classes of
Rooms

Floors

Designed
Spilce
Figure 5: Example adivity/spacemodel of ahospital design. The light grey arrows indicate sub-
hierarchies that are not drawn.

Now in ou data set the room numbers used in the briefing database map diredly to zone numbers
in the CAD design. Suppcse that we take the set of rooms in a briefing database (the design
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requirements) and with damain expert help we derive aset of low level adivities a,. For eat ay, if
we label ead room from a sample training set of hospitals with the suppat or otherwise of adivity o,
then we can lean a dasdfier for ead adivity. If we gply this st of clasdfiers to a particular
hospital CAD test data set then we can classfy the design acrdingly and thereby derive aspatial
hierarchy which correspondsto the adivity hierarchy.

An example may make this cleaer. Taking the data set and an arbitrarily chosen adivity (in this
caseit is“acting as a bedroom”), adedsiontreeisinduced using the method described. Each instance
in the training set consisted of the possble mntents of a room plus its nominal area The resulting
dedsion tree has 14 leaves, 21 noas and an acarracy of 99% cross validated on the training set.
Labelling rooms that suppat “acting as a bedroom” as class A and ahers as class B, we derive a
gpatial hierarchy as follows. The roat is the entire space the hospital. This is partitioned into floors,
ead floor is partitioned into HPUs, ead HPU is partitioned into classA or B, and ead classin ead
HPU is partitioned into rooms. We have, then, the CAD design re-represented as a functional
hierarchy. Figure 6 shows part of the anbulatory care sub-hierarchy, visuali zed as an SGF graph. SGF
is a Structured Graph Format presented to the viewer from an XML file (Liedhti, Sifer & Ichikawa
1998, Sifer 1999. This XML spedfies a set of nodes and two kinds of direded edges. In ou case the
nodes correspond to the nodes in the spatial hierarchy. For example, the following XML extrad
shows two nodes with display names “COFFSHARBOUR HOSATAL” and“FLOOR NUMBER 1”.

Jin'#‘ SGViewer 2.0; COFFS HARBOUR HOSPITAL | fiA

HOSPITAL

—
point
(| FLOOR 1
twork
|
| —
m

AL

CLASS A

%D]r

RECEFTION PARENT ROOM PROCEDURE RO.

RECEFTION ‘ WAIT ‘ WAIT

GROUPROOM ‘ CLNR ‘ STORE ‘ ou

restrict  rescale rotate clear ROOM AC 001

HOSPITAL

restrict  rescale  group trail | _swnch | summarylinks | IN | OUT| Lewels: 1 find  window 7

Figure 6: Part of the spatial heirarchy displayed as an SGF graph. The display is of some of the
"ambulatory care” HPU rooms, zoomed into the room level.

<NODES>
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<NODE NODEID="HOSHATAL" LABEL="HOSHATAL"></NODE>

<SGATT NAME="DESCRIPTOR" VALUE="COFFSHARBOUR HOSHTAL"/>
</NODE>

<NODE NODEID="FLOOR1" LABEL="FLOOR 1">

<SGATT NAME="DESCRIPTOR" VALUE="FLOOR NUMBER 1"/>

</NODE>

</NODES>

Thefirst kind d edge link is hierarchicd and thus describes atree These will spedfy edge links from
the roat node to eadh floor node, from ead floor node to eady HPU node, and so on.Figure 6 shows
part of the hierarchy, with the SGF viewer set to zoom in onCLASSA rooms in the anbulatory care
HPU on the first floor. The following extraa shows the hierarchy edge links for the leftmost three
rooms.

<HIERARCHY>

<LINK SOURCE="FLOORIACCLASSA" DEST="AC001'></LINK>
<LINK SOURCE="FLOORIACCLASSA" DEST="AC002'></LINK>
<LINK SOURCE="FLOORIACCLASSA" DEST="AC003'></LINK>

</HIERARCHY >

The second kind o edge link is associative and describes a direded graph. The aility of the SGF
Viewer to simultaneously display and revigate both a hierarchy and a topdogy are one reason for
choasing thistod. The kinds of association that could be displayed vary with what associations are of
interest to the user. One example would be to display topdogy using the asociative links and
clasdficaion wsing the hierarchicd links. Figure 7 shows as an example setting topdogy amongst
HPUs and the asciative links.

The following XML extrad shows three @&sciative alge links. If we look at the lower half of
Figure 7 we can seenode “HPUAC" in the centre in pink, inpu associations to “HPUAC” on the |eft
in blue, and ouput associations on the right in blue. Thus the link from “HPUON” to “HPUAC” is
visuali zed as a blue box labelled “ON” locaed the immediate left of a pink boxlabelled “AC".

<NETWORK>

<LINK SOURCE="HPUON" DEST="HPUAC"></LINK>
<LINK SOURCE="HPUON" DEST="HPUPR"></LINK>
<LINK SOURCE="HPUHT" DEST="HPUAC"></LINK>

</NETWORK>

This XML file was generated from the ArchiCAD data using the following processs. Firstly
ArchiCAD was used to dump a zonre listing. This resulted in a table @ntaining, amongst other
attributes, the zone name and number, and zone ntents. This was then processd into a table
containing floor number, HPU code, room number and room name. The dassfier was then runand an
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extra alumn is appended to the table mntaining the results of the dasdficaion. This table then
provides enough information to generate the node and herarchy tags in XML format. For the
associative network tags we dhose, for this example, to use topdogy. If we extraded from the CAD
data the pair of rooms that ead doa conreded then we would have aset of associations describing
room topdogy. For the example shown in Figure 7 an HPU A is marked as being assciated with
another HPU B if the distance between the centres of A and B iswithin 150/ of the distance from the
centre of A to the centre of its closest neighbour.

BCRE HOSPITAL

—
point
|| FLOOF. 1 FLODR 2

JUMMENE VAU MO CECEECCRTERLEL  CERRTEREERLEE

TN DN T CEEREEE TR
I T T D A0TRRE

clear  Ambulatory Gare

A5 | BM | BS |CC | C5 | D5 OT (DY [ ES | F5 | WE |QC | QT

| .
contract
—

restrict | rescale ot

RE HT

RE M

AC ON PR

HT
L ON
PR

MW
PR

ON

restrict  rescale  group trail synch | summary links | IN [OUT] Lewels: 2 find  window 7
=

Figure 7: SGF Heirarchy showing the root node, and associations to and from the “AC” node of floor
1.

In summary, then, the process operates in two phases and resembles that shown in Figure 8. The
first phase starts with test data for requirements and some domain knowledge. Here an adivity model
isaaquired and applied, resulting in atable of test data with ore dtribute gppended for ead adivity
label. Madhine learning tedhniques are then applied to the CAD data to lean a dassfier for eath
adivity. The seoond plase involves the gplicaion d the dassfier to the seleded test data, and a
source XML datafile is generated. A GUI alows for the seledion d adivities of interest by a user,
and the source XML is transformed into an SGF format for display. This then iterates as user
seledions change.
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XML Data
Transform

Briefing

Test —
Data Apply Machine Classify ‘ User
Model Learning Rooms ‘ GUI
Domain

Expert

CAD
Training
Data

CAD
Test Generate
Data Topology

Figure 8: Summary of the Knowledge Discovery Process

5. Conclusion

We believe that there probably are underlying patterns in the achitedural structure of similarly
styled haspitals. However it is not clea yet how those patterns can be discovered and then presented
in such a form that the “knowledge” would be interesting to pradicing architeds. Finding an
underlying pattern to be statisticdly significant does not necessarily make it useful. Perhaps what is
needed is further reseach into qualit ative representations of architedural structure and style.

Asto finding patterns in the contents of buildings, it is debatable whether there is any real pattern
in the mntents of similarly styled rooms and buldings. The presence of statisticdly significant
patterns within a given data set does nat necessarily generalize to ather buildings of the same style or
use. The patterns could also be dueto an archited’s preference, or just serendipity.

It is common for data mining papers to start with a data set already preprocessd into a set of
useful attributes, and for a seleded algorithm to then be run. If the data mining task isto take raw data
and urcover underlying patterns then half of the work has been dore withou adknowledgement of the
importance of the domain knowledge which was applied. The role of domain knowledge and leaning
biases $roud be adknowledged in any knowledge discovery work.

Perhaps a more immediately profitable use for data mining techniques on architecdural CAD data
is the re-presentation d designs in a different form acwrding to an underlying ontology. We
considered here the Activity/Space Ontology but others could be gplied to those engineaing
domains that also design with CAD todls. Such a re-presentation then enables knowledge discovery
by the users of the data. We believe that more work is needed onre-presenting and visualizing design
knowledge in forms that are useful to designers.
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