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KNOWLEDGE DISCOVERY IN ARCHITECTURAL CAD DATA

Abstract.
 Knowledge discovery and data mining techniques have the potential to find patterns in very
large sets of data. Applying these techniques to design data has two problems: the volume and
complexity of the source data, and the discovered knowledge itself. A result is that existing
algorithms may not be computationally feasible and in any case may not produce, of
themselves, results that are of interest to a designer. In this paper we first demonstrate the two
problems above by applying data mining techniques to architectural CAD data. We then
reconsider the role of data mining for knowledge discovery as facilit ating the re-presentation
of source design data in other forms such that relationships are revealed to the designer that
would not otherwise be visible. To investigate this we adopted a framework for knowledge
discovery combining consecutive complementary strategies, and applied it to the same
architectural CAD data.
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1. Digital design representations and data mining

Computational support and digital design representations serve different purposes during different
phases of a design process. Consequently, it is not surprising that digital design representations span
the whole variety of today's multimedia computing, as shown in Figure 1.
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Figure 1. The scope of design data from a data mining point of view

Different forms and layers in digital design media vary with respect to structuring and richness of the
design data that they hold. Design domain knowledge is coded in a variety of machine readable forms
as electronic manuals and references, project databases, CAD drawings and database, images and 3D
models, design communication transcripts and activity records.

�  structure-valued data, including: (i) attribute-value pairs; (ii ) relational tables; (iii ) object-
oriented data structures;

�  weakly structured data, including: (i) texts in free, table format or structured communication
records; (iii ) vector graphics, such as CAD drawings, object-oriented images;

�  raw data, including: (i) raster images of photographs, sketches; (ii ) animated images; (iii )
audio and video data;

�  links data, including: (i) hyperlinks within weakly structured data; (ii ) links between
structure-valued components and elements of weakly structured data; (iii ) links within
structure-valued data; (iv) information about the sequence of visited links.

Data mining as a process (Fayyad, Piatetsky-Shapiro & Smyth 1996) is part of what is called
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knowledge discovery - an interactive and iterative process of discovering useful knowledge from the
patterns extracted by the data mining techniques. The knowledge discovery process consists of three
main phases: 1) pre-processing, 2) data mining, and 3) post-processing. Data mining, the central
phase, involves the application of statistical and machine learning algorithms with which to extract
patterns in data. However, successful knowledge discovery requires that significant amounts of effort
must be applied to the other phases.

The pre-processing phase deals with data preparation. Techniques of sampling, feature selection
and feature construction deal with problems in data quality such as unfill ed database fields or records,
attribute noise and errors. In our case errors extend to the area of text errors, missing images or
drawings, errors in the transcripts of design communications. The most obvious part of pre-processing
is in transforming raw data into whatever format is required by the data mining algorithms. In design
knowledge discovery tasks this is an extremely important stage, due to the variety of the data formats
(usually non-table), and the necessity to deploy a wide variety of data mining techniques to these data.
High data volumes and data dimensionality is a feature of knowledge discovery tasks that are often
not seen by the designers of the underlying machine learning and statistical algorithms.

In the post-processing stage the data is interpreted and visualised. This has a feedback effect on
data mining algorithm selection and application. For example, do the results need to be human
interpretable or not? If yes then a decision tree may be selected, if no then a neural network may be
selected. Post-processing is also concerned with evaluation: are the results statistically significant and
reliable? Are they interesting with respect to the goals of the project?

The importance of the pre-processing and post-processing phases for knowledge discovery from
design data is underlined by the nature of design “knowledge”. What exactly is denoted by design
knowledge and how it is represented are major issues in design computation research. Financial and
business data are usually well -structured in object-oriented or relational attribute-value
representations. Producing a knowledge source to be the input to a data mining algorithm is roughly
equivalent to de-normalising a database schema into a flat table. The rows of such a table are design
cases and data mining algorithms look for combinations of repetitions in attribute values, as shown for
example in Figure 2. Such a representation makes almost explicit the associations between different
attributes of the case.

x1 x2 ……... xm y1 y2 ……... ym
a b la p q……... ……...

c b nz r s……... ……...

a b la p q……... ……...

a b la p q……... ……...

t q mf i t……... ……...

a b qa r s……... ……...

z c lf p q……... ……...

x1 x2 ……... xm y1 y2 ……... ym
a b la p q……... ……...

c b nz r s……... ……...

a b la p q……... ……...

a b la p q……... ……...

t q mf i t……... ……...

a b qa r s……... ……...

z c lf p q……... ……...

Figure 2. “Flattened” database as the source for data mining

It would be convenient if such an approach to the composition of knowledge sources worked in the
mining of design data too. However, the content of the table cells would be heterogeneous as the
source data includes drawings, product descriptions, 3D models, design communications, and project
management data. What exactly should be mined, and how we should combine and utili ze the
outcomes of different data mining algorithms performed over various components of design data, are
questions that do not have trivial answers.
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Until the early 1990’s, rule-based representations were amongst the most popular formalisms in
artificial intelli gence as they were seen to be “understandable” both by humans and computers. They
were naturally adopted into a field of data mining that at that time was in its early days. Rule-based
representations can be used for further reasoning, explanation of the discoveries, formulating goals
and reasoning chains. Some other representation schemata may have computational advantages but
can be diff icult for humans to understand. A trained neural network, to take an example, is capable of
computing output values from the input values that it is supplied with, but it can not provide any
meaningful explanation of how it is computing those values.

So, we have two problems regarding design data which make their application to data mining and
knowledge discovery diff icult compared to the domains normally considered: the volume and
complexity of the source data, and the discovered knowledge itself. A result is that existing
algorithms may not be computationally feasible and in any case may not produce, of themselves,
results that are of interest to a designer. The approach we adopt has origins in the field of psychology.
Von Glasersfeld, describing Piaget, distinguished representation from “ re-presentation” so as to
emphasize the construction of meaning of an object. The process of re-presentation in humans takes
items which are considered given and coordinates them as content into a new form, with the resulting
products being available as given in some future process (von Glasersfeld 1995).

The approach canvassed in this work, then, is to view our goal of knowledge discovery on design
data as facilit ating the re-presentation of source design data in other forms such that relationships are
revealed to the designer that would not otherwise be visible. To investigate this we adopted a
framework for knowledge discovery combining consecutive complementary strategies, and applied it
to a real world design data (Simoff and Maher, 1999). The strategies were:

1. Data-driven exploration, where we do not specify what we are looking for before starting to
examine the case data. The result of this step is building of an initial set of patterns that extend a
priori knowledge and allow a refinement of the goals of the knowledge discovery process. For
example, in the text analysis of a case library of design descriptions we started with finding the
frequencies of word occurrences in the text. As a result we build an initial vocabulary – the initial
set of semantic patterns that can be refined to become the basis for the formal semantic models for
indexing and adapting the design cases (Simoff and Maher, 1998b).

2. Hypothesis- or goal-driven exploration, where we initiall y specify what we are looking for (i.e.
we formulate a hypothesis), which is either refined during the exploration, partiall y or completely
reformulated or finally rejected. This corresponds to the classical machine learning approach. The
hypothesis for this stage may come from domain knowledge or from the output of the data-driven
exploration stage. For example, we specify ontology based on the initial vocabulary and the
information model of the design data. This can be viewed as a hypothesis for a classifier tree in
the domain. Then the ontology is modified according to derived co-occurrences, concordances
and the results of correspondence analysis of the text in the cases.

2. Knowledge sources and strategies for data mining

In our previous work on design data mining (Maher and Simoff , 1998; Simoff and Maher, 2000) we
considered two types of source data: a hypermedia case library of buildings
(http://www.arch.usyd.edu.au/kcdc/caut) and online conversations in collaborative design sessions. In
both of these sources, the data was treated as text and the data mining algorithms relied on various
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text analysis approaches. These two data sources were developed in the University as part of our
teaching and research in computer supported design.

In the current study we looked at the data sources developed in an architectural practice.
Specifically, we considered a single architectural project, with data taken from the following sources:

1. ArchiCAD archive of a hospital.
2. Briefing database, containing requirements that lead to the above CAD archive.

In this work the CAD data was the target of the data mining algorithms, with the briefing database
being used to generate the room names and categories from which class labels were generated. The
entire CAD archive and the briefing database were too large to consider, so we reduced the data to
information about the rooms including the type, the furniture and equipment and any attributes that
were stored in the CAD database. We extracted the relevant data from the CAD archive and put it in a
relational database and then used SQL queries to obtain the following data:

1. List of Hospital Planning Unit (HPU) codes, such as for “emergency care”, “surgical ward” ,
“medical ward” , “maternity” and “catering” .

2. List of standard furniture and equipment.
3. List of the attributes for each required room. Each row corresponded to one room and

contained attributes such as name, code, location, dimensions and equipment.

ArchiCAD models are constructed using objects li ke walls and doors that are conceptually famili ar
to architects. Zones with position, size and a contained set of objects denote rooms. The implication
of this for knowledge discovery is that these conceptual objects already exist in the data and thus are
not themselves a useful goal. This contrasts with pattern matching and data mining techniques on
vector images where discovering the conceptual objects is the goal (see, for example, (Nagy 2000)).

In  ArchiCAD, the standard zone li st contains the attributes shown in Table 1 for each room, with
a second zone li st containing the contents of each room.

Table 1. Attributes of a zone or “ room” in ArchiCAD

Att r ibute  Type
ZoneStoryName String

ZoneName String
ZoneHeight Numeric

ZonePerimiter Numeric
SurroundWallSurface Numeric

MeasuredArea Numeric
TotalDoorsSurface Numeric

TotalWindowsSurface Numeric
ZoneCategoryCode Numeric
ZoneCategoryName String

WallsAlongPerimeter Numeric
TotalDoorsWidth Numeric
TotalDoorsWidth Numeric
NofAllCorners Numeric
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NofConcaveCorners numeric

The attribute names should be self-explanatory except perhaps for ZoneCategoryCode and
ZoneCategoryName. A zone is an aggregation of spatial regions that have a similar function, and zone
categories are the assignment of zones to functional categories chosen by the designer. Examples of
zone categories include “room”, “circulation” , “off ice” and “plant” .

Three strategies were followed. The first was a data driven exploration of the data set. A data set
was obtained from the CAD data and was pre-processed into the form required by the data mining
package. Various algorithms were then run in an attempt to investigate the structure of the data and to
uncover any underlying patterns in the data.

The second strategy was a goal driven one. The two goals used were to attempt to determine data
patterns based on room topology and room content. Data sets describing the position of rooms in the
hospital and the contents of rooms were obtained and the algorithms run again. The class label used
on supervised algorithms was room type and was derived from the briefing database.

Finally, we decided to customize a technique based on the Activity/Space model (Maher, Simoff ,
and Mitchell , 1997). This is the “re-presentation” view of knowledge representation that was
introduced earlier. The is to enable the presentation of the design to the designer in a different form
such that patterns and relationships that may not have been apparent in the CAD data become so.
Rather than our computational algorithms attempting to present mined knowledge as a finished
product, we divide “knowledge discovery” into (i) classification and visualization tasks, and (ii )
interpretation tasks. The first of these then is computational and is based on the Activity/Space
Ontology. The latter relies on a designer and their domain knowledge.

The data mining algorithms were run under WEKA (Frank et al. 2000) on a Linux platform. As the
data originated from MS Windows applications, platform independent representations that were easily
manipulatable were required. This included XML dumps of the SQL queries and vertical bar
delimited ASCII dumps of the ArchiCAD listings. Data cleaning and data transformation, from these
formats into the ARFF format required by WEKA, used standard Linux/Unix utiliti es along with Java
XML and XSL tools from Apache (The Apache Software Foundation 2000).

3. An Exploration of the Data

3.1 THE NATURE OF OUR DATA

One of the key results from computational learning theory is that of Vapnik-Chervonenkis dimension.
Consider learning a classifier 

� ��� � �
from a sample space S to an hypothesis space H. The VC

dimension is the largest set of examples that can be completely fit by H (Shavlik and Dietterich 1990),
where H completely fits a set of samples if there is always an h �  H consistent with any class labeling
from the samples. If the number of training samples substantiall y exceeds the VC dimension then it is
li kely that any hypothesis h �  H consistent with the examples is actually a good approximation of f. If
the number is less than the VC dimension then f is unlikely to classify new samples correctly. For
example, the VC dimension of axis-parallel rectangles in a d dimensional real space is 2d (Blumer et
al. 1989).

Haussler (1988) uses this and Valiant’s learning framework (so called PAC learning), to construct
results of the minimum number of independent random examples of a target concept on an instance
space S defined by N attributes. Take as example hypotheses those that are simple conjunctions (in
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conjunctive normal form, or CNF). If we let, for example, the accuracy and confidence bounds both
be 0.05 then of the order of 	 (425 + 130N) independent random samples of the target concept are
required such that, with probabilit y at least 0.95, we can either produce a CNF hypothesis with at
most error 0.05 or be told that the hypothesis is not CNF. What this means is that even when mining
for very simple concepts, the number of sample instances necessary increases dramatically with the
number of attributes. This is why data sets normally used in data mining are “ tall and thin” , i.e.
have lots of instances and few attributes.

In our CAD data this is not the case, and even the few attributes described in the previous section
were either numeric or strings. Depending on the target concept we may not be able to obtain enough
instances from within a single architectural project – our data is better characterized as being
“ shor t and fat” .

The obvious response to this is to look for more data from other architectural projects, which in
our study would be from other hospital designs. However underlying learning theory is a requirement
that samples be taken from the same probabilit y distribution. Intuiti vely this requirement means that
we should take samples corresponding to the same concept. To do otherwise may result in a classifier
that is statistically valid but otherwise of dubious meaning. Thus to sample across two architectural
designs A and B so as to determine styli stic patterns, say, would require that A and B were equivalent
in terms of size, scale, functionality, style and so on. Even assuming that such knowledge was
available from design experts, using that knowledge to justify sampling across designs so as to
uncover patterns across designs would be a case of circular reasoning.

3.2 ASSOCIATION RULE MINING

As a first pass at knowledge discovery involved inducing associations we ran the Apriori association
rule learning algorithm on the ArchiCAD data set prepared as described in section 2. As Apriori
requires nominal attributes, a minimum description length discretisation filter was used as a
preprocessing stage. The zone category was used as a class label on this filter as the basis for
transforming continuous attributes into a set of intervals. The set of intervals then served as an
enumeration for Apriori resulting in large numbers of rules such as these:


��
�����������������������
���! 
"�#�$�%�&�%�'�(�)�*,+.-0/
/ 1

2�3�4�5�687:9
;�<�3>=0?87:9�<
4�@ A B C D�E�F�G�H8I:J
K�L�E>M0N�OQP�R�S�G
T�U V W

X�Y
Z�[�\�]�^�_�[�Y�_�`�a
b�c!d
e�f�g�h�i�j�f�k�l�m
n�o�hqpsrut�hwv�h
xzy
{ |

}�~����,� �����������u�w�u���u��� � ��������� �
���������������w���������
�� ��q¡s¢>£
�
�� 0¤ ¥

¦�§©¨�¦«ª ¬®­�¯
¯
°�­�¯�±�²�³�´
µQ¶�·�¸�µw¹�µQ¶ º »�¼¾½�¿
À Á Â¾Ã�Ä�Å,Æ Ç�È�É�Ê
Ë
ÊQÌ�Í�Î�ÊwÏ�ÊQÌ Ð Ñ0Ò®Ã©Â�Ä

Other trials based on the contents of each room were performed so as to discover which objects
normally reside together in similar classes of room. The association rules that resulted were no more
interesting than those shown above. The mined rules have high confidence but that does not make
them interesting. We would expect that if total window width in a room is zero then there would be
zero window surface area. This ill ustrates a problem with association rule learning: we do not just
require those rules with the highest confidence, we desire rules that are “interesting” . However
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association rule learners generally find all association rules and then return those with the highest
confidence measure.

This is a known property of association rule learners (Bayardo & Agrawal 1999). Bayardo and
Agrawal (1999) claim that statistical metrics such as support, confidence, entropy and Ó 2 value are
measures of “ interestingness” and that using such measures can lead to eff icient mining of rules. We
believe that such measures may lead to statistically interesting rules, but that to acquire rules that are
interesting to a domain expert requires something else. This something else is, we believe, based on
domain knowledge, usually through preprocessing or through dumping lots of rules and then post-
processing them. Indeed this is often done implicitl y and without acknowledgement, with an attribute
set and algorithm being tailored to suit a specific goal prior to running the learning algorithm.

3.3 SUPERVISED CLASSIFICATION

A number of classifiers were induced on the CAD data set. For the class label, the briefing database
queries were used to transform the room name on each instance into one of the following: surgery,
recovery, utiliti es, services, bathroom, corridor, consulting, reception, and other. Classifiers were then
induced using 10-fold cross-validation.

ZoneCategoryCode > 1

ZoneCategoryCode <= 0 ZoneCategoryCode > 0

MeasuredArea > 6.2MeasuredArea <= 6.2

WallsAlongPerimiter > 79WallsAlongPerimiter <= 79

SurroundWallSurface > 242.89

SurroundWallSurface > 239.93

NofAllCorners > 5NofAllCorners <= 5

SurroundWallSurface <= 239.93

SurroundWallSurface <= 242.89

ZoneCategoryCode <= 1

services other other

reception surgery

Figure 3. Induced decision tree fro hospital data. Part of the tree is shown explicitl y as nodes and
leaves, the remainder as compressed green triangles. Red nodes are decisions, blue are class labels.

As an example, Figure 3 shows part of a probabili stic decision tree induced using Quinlan's C4.5
algorithm. This tree was generated from inside the meta-classifier AdaBoostM1, with C4.5 pruning
branches of confidence less than 25%. The boosting meta-classifier runs the tree induction algorithm
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over a number of trials and a weighted voting scheme is used to assemble the final classifier. This tree
contains 43 leaf nodes for the 9 classes, and it ill ustrates one of the common problems with decision
tree induction: fragmentation. Indeed, running C4.5 alone and without pruning results in a tree with
80 leaf nodes and a lower classification accuracy. Cross-validation statistics showed that 93.9% of
instances were correctly classified and classifications were shown to be strongly diagonalised when
displayed as a confusion table. The results also reinforce the earlier comments about the nature of our
data. A single architectural design may not contain enough instances to support full generalization,
and sampling across designs may not be supportable.

As another example, consider a model tree that was constructed. Instead of inducing a symbolic
classifier that maps from the attribute space onto an enumerated set of class labels, we learned the
predictor of a numeric attribute. For ill ustration purposes we used the model learning algorithm M5'
to learn a predictor of the numeric attribute MeasuredArea. The result is a small decision tree (the
“ tree” part, as shown in Figure 4) with an equation at each leaf with which to calculate the value of
the attribute (the “model” part).

OR reception OR other)
roomType != (surgery OR utility

Model4 Model5

ZonePerimiter <= 54

ZonePerimiter <= 20 ZonePerimiter > 20

ZonePerimiter > 54

ZonePerimiter <= 30.9

ZonePerimiter > 114ZonePerimiter <= 114

ZonePerimiter <= 30.9

Model1

Model10 Model11Model2

Model3 Model7

Model2 Model2

OR reception OR other)
roomType = (surgery OR utility

ZonePerimiter <= 46.4 ZonePerimiter > 46.4

Model6

NofCorners > 5NofCorners <= 5

TotalDoorsSurface > 28.2TotalDoorsSurface <= 28.2

ZonePerimiter <= 38.2

ZonePerimiter > 38.2

NofCorners > 13.5NofCorners <= 13.5

Figure 4. Model tree from hospital data

To use the classifier we proceed as for a decision tree until we reach a leaf. We then apply the
equation referenced by that node. Thus the equation which calculates the target attribute
MeasuredArea for instances with ZonePerimeter Ô  20 is the equation labelled Model1, which is

Õ�Ö�×�Ø�Ù�ÚuÖwÛuÜ�ÚuÖ�× Ý Þ¾ß©Þ�à
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For most of the classifiers generated the classification accuracy was acceptable if appropriate
induction parameters and meta-classifiers such as AdaBoostM1 were used. Indeed, a 100% accuracy
may be unacceptable in some circumstances as it may indicate that it is not generalizing. The size of
the C4.5 decision tree that resulted above is suitable for computer use as a classifier but a tree with 43
leaf nodes is not easily displayable to or understandable by a user. This problem of visualization is
another known problem in data mining tasks (Hofmann, Siebes & Wilhelm 2000, Han & Cercone
2000). If the goal of an induction task is a machine learning one then provided that the classifier is
eff icient and accurate enough to be used on a target platform, all i s well . However, if the task is
knowledge discovery then the results should be understandable, both in content and in scope of
results, by appropriately knowledgeable humans. Furthermore, as with the association rules, it is not
clear how interesting such classifiers would be to a user.

4. Employing a conceptual model to facili tate knowledge discovery in design data

One of the primary goals of knowledge discovery is to convert raw data into “knowledge”. The
number of abstractions on a nontrivial set of observations is unlimited. Which abstractions are chosen
is a result of learning biases: limiting the representational language to those terms of interest, limiting
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the order in which alternatives are examined, and so on.  Indeed, as generalizing from a set of
observations is not deductively valid (Langley 1996), without learning biases a system would have no
reason to choose one abstraction over another and learning would not be possible. Thus, for data
mining to work must require that some domain knowledge be applied, even if this is not recognised as
such explicitl y.

Pazzani (2000) describes knowledge discovery as a process of interaction between a data miner
and a domain expert. Feedback on the novelty, utilit y and understandabilit y of mined solutions lead to
adjustments in data format and algorithm. For the techniques ill ustrated to be useful we should
consider using domain knowledge. Domain knowledge can be used in the following ways:

Preprocessing stage

This is either unsupervised or supervised.  Unsupervised includes techniques li ke feature
selection, feature construction, discretisation, and clustering using some metric. Supervised
involves either model based techniques (explicitl y using domain knowledge), or providing the
classes upon which discretisation and so on work. Further, decisions li ke whether to sample a
database or not, and how to structure the data could be influenced by knowledge of the
application domain.

A pr ior i theory in data mining

Instead of starting with preprocessed data and then applying selected algorithms to uncover an
underlying theory, we start with some kind of a priori theory and use the database to refine and
extend it.

Inductive bias

This is either a representation bias or a search bias. As an example of a representation bias is
effecting the choice of algorithm or representation based on domain knowledge. Examples of
search bias are effecting instance selection order, encoding templates that constrain a search,
and using user feedback during search. For this work the primary driver of inductive bias
should be the underlying goals of the knowledge discovery task in this project.

Considerations about the representation of discoveries are also extremely important if we need to
incorporate discovered knowledge back into a design support system. Our proposal is to use a
conceptual model, a predefined knowledge representation schema, capable of accommodating
different discoveries and presenting them back to the designers in an integrated form. Simoff and
Maher (1998b) proposed a semi-automatic procedure for deriving terminological taxonomies by text
mining of the case data in a hyper-media design case library. The conceptual model, around which the
cases in the library were structured, provided the background knowledge in this method. The same
structure can be used to accommodate extracted knowledge. Initiall y, Simoff and Maher (1998a)
proposed a knowledge representation schema, ontology in this case, for multimedia data mining for
design information retrieval.

If we take discovery to be to “divulge, reveal, disclose ... knowledge'” (The Oxford English
Dictionary 1989) and take knowledge to be justified belief, then we might validly consider some
methods which do not attempt to generalize over a data set to be knowledge discovery. For example,
re-presenting CAD data in a form that reveals relationships to the user that would not otherwise be
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visible facilit ates knowledge discovery on the part of the user without such applications themselves
performing any inductive or statistical generalizations explicitl y.

In this work, the formalism that is used is based on the Activity/Space conceptual model, proposed
by Maher, Simoff and Mitchell (1997) and further elaborated in a design ontology by Simoff and
Maher (1998). Activity/Space ontology makes explicit the representation of the required functionality
and resulting spatial arrangement and to some extent supporting structure in an architectural design.
Building design knowledge, then, is either knowledge of activity (required functionality) or spatial
knowledge (realized structure).

Figure 5 ill ustrates the structure of an activity/space model. Above the thick horizontal li ne is an
activity hierarchy; below the line is a corresponding space hierarchy. An activity is “a purposeful
action, whose performance requires a particular amount of space, time and an object that performs
this activity” (Simoff & Maher 1998a). For our data set the high level activities are called HPUs and
their requirements come from the briefing database. Examples include emergency care, surgery,
medical ward, maternity and catering. Further, a medical ward requires the facilit ation of lower level
activities such as providing for a patient bedroom, waiting by visitors, storing of linen and equipment,
and so on. A space acting as a bedroom then requires an appropriate spatial layout and set of objects
for sleeping, laying, reading, eating, getting out of bed, and so on. Thus the requirements for a
building can be expressed as an activity hierarchy. Similarly, a spatial model of a designed building
can be expressed hierarchically based on topology, or on a classification of the activities supported, or
both.

Designed
Rooms

Activities

Space

& Equipment

Required

Required

Requirements
Database

HPUs

Rooms

Required
Furnishings

Designed

Space

Classes of
Rooms

HPUs &
Floors

Figure 5: Example activity/space model of a hospital design. The light grey arrows indicate sub-
hierarchies that are not drawn.

Now in our data set the room numbers used in the briefing database map directly to zone numbers
in the CAD design. Suppose that we take the set of rooms in a briefing database (the design
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requirements) and with domain expert help we derive a set of low level activities � n. For each � n, if
we label each room from a sample training set of hospitals with the support or otherwise of activity � n

then we can learn a classifier for each activity. If we apply this set of classifiers to a particular
hospital CAD test data set then we can classify the design accordingly and thereby derive a spatial
hierarchy which corresponds to the activity hierarchy.

An example may make this clearer. Taking the data set and an arbitraril y chosen activity (in this
case it is “acting as a bedroom”), a decision tree is induced using the method described. Each instance
in the training set consisted of the possible contents of a room plus its nominal area. The resulting
decision tree has 14 leaves, 21 nodes and an accuracy of 99% cross validated on the training set.
Labelli ng rooms that support “acting as a bedroom” as class A and others as class B, we derive a
spatial hierarchy as follows. The root is the entire space: the hospital. This is partitioned into floors,
each floor is partitioned into HPUs, each HPU is partitioned into class A or B, and each class in each
HPU is partitioned into rooms. We have, then, the CAD design re-represented as a functional
hierarchy. Figure 6 shows part of the ambulatory care sub-hierarchy, visualized as an SGF graph. SGF
is a Structured Graph Format presented to the viewer from an XML file (Liechti, Sifer & Ichikawa
1998, Sifer 1999). This XML specifies a set of nodes and two kinds of directed edges. In our case the
nodes correspond to the nodes in the spatial hierarchy. For example, the following XML extract
shows two nodes with display names “COFFS HARBOUR HOSPITAL” and “FLOOR NUMBER 1” .

Figure 6: Part of the spatial heirarchy displayed as an SGF graph. The display is of some of the
"ambulatory care" HPU rooms, zoomed into the room level.

<NODES>
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<NODE NODEID="HOSPITAL" LABEL="HOSPITAL"></NODE>
<SGATT NAME="DESCRIPTOR" VALUE="COFFS HARBOUR HOSPITAL"/>
</NODE>
<NODE NODEID="FLOOR1" LABEL="FLOOR 1">
<SGATT NAME="DESCRIPTOR" VALUE="FLOOR NUMBER 1"/>
</NODE>
...
</NODES>

The first kind of edge link is hierarchical and thus describes a tree. These will specify edge links from
the root node to each floor node, from each floor node to each HPU node, and so on. Figure 6 shows
part of the hierarchy, with the SGF viewer set to zoom in on CLASS A rooms in the ambulatory care
HPU on the first floor. The following extract shows the hierarchy edge links for the leftmost three
rooms.

<HIERARCHY>
...
<LINK SOURCE="FLOOR1ACCLASSA" DEST="AC001"></LINK>
<LINK SOURCE="FLOOR1ACCLASSA" DEST="AC002"></LINK>
<LINK SOURCE="FLOOR1ACCLASSA" DEST="AC003"></LINK>
...
</HIERARCHY>

The second kind of edge link is associative and describes a directed graph. The abilit y of the SGF
Viewer to simultaneously display and navigate both a hierarchy and a topology are one reason for
choosing this tool. The kinds of association that could be displayed vary with what associations are of
interest to the user. One example would be to display topology using the associative links and
classification using the hierarchical li nks. Figure 7 shows as an example setting topology amongst
HPUs and the associative links.

The following XML extract shows three associative edge links. If we look at the lower half of
Figure 7 we can see node “HPUAC” in the centre in pink, input associations to “HPUAC” on the left
in blue, and output associations on the right in blue. Thus the link from “HPUON” to “HPUAC” is
visualized as a blue box labelled “ON” located the immediate left of a pink box labelled “AC”.

<NETWORK>
...
<LINK SOURCE="HPUON" DEST="HPUAC"></LINK>
<LINK SOURCE="HPUON" DEST="HPUPR"></LINK>
<LINK SOURCE="HPUHT" DEST="HPUAC"></LINK>
...
</NETWORK>

This XML file was generated from the ArchiCAD data using the following processes. Firstly
ArchiCAD was used to dump a zone li sting. This resulted in a table containing, amongst other
attributes, the zone name and number, and zone contents. This was then processed into a table
containing floor number, HPU code, room number and room name. The classifier was then run and an
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extra column is appended to the table containing the results of the classification. This table then
provides enough information to generate the node and hierarchy tags in XML format. For the
associative network tags we chose, for this example, to use topology. If we extracted from the CAD
data the pair of rooms that each door connected then we would have a set of associations describing
room topology. For the example shown in Figure 7 an HPU A is marked as being associated with
another HPU B if the distance between the centres of A and B is within 150% of the distance from the
centre of A to the centre of its closest neighbour.

Figure 7: SGF Heirarchy showing the root node, and associations to and from the “AC” node of f loor
1.

In summary, then, the process operates in two phases and resembles that shown in Figure 8. The
first phase starts with test data for requirements and some domain knowledge. Here an activity model
is acquired and applied, resulting in a table of test data with one attribute appended for each activity
label. Machine learning techniques are then applied to the CAD data to learn a classifier for each
activity. The second phase involves the application of the classifier to the selected test data, and a
source XML data file is generated. A GUI allows for the selection of activities of interest by a user,
and the source XML is transformed into an SGF format for display. This then iterates as user
selections change.
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Figure 8: Summary of the Knowledge Discovery Process

5. Conclusion

We believe that there probably are underlying patterns in the architectural structure of similarly
styled hospitals. However it is not clear yet how those patterns can be discovered and then presented
in such a form that the “knowledge” would be interesting to practicing architects. Finding an
underlying pattern to be statistically significant does not necessaril y make it useful. Perhaps what is
needed is further research into qualitative representations of architectural structure and style.

As to finding patterns in the contents of buildings, it is debatable whether there is any real pattern
in the contents of similarly styled rooms and buildings.  The presence of statistically significant
patterns within a given data set does not necessaril y generalize to other buildings of the same style or
use. The patterns could also be due to an architect’s preference, or just serendipity.

It is common for data mining papers to start with a data set already preprocessed into a set of
useful attributes, and for a selected algorithm to then be run. If the data mining task is to take raw data
and uncover underlying patterns then half of the work has been done without acknowledgement of the
importance of the domain knowledge which was applied. The role of domain knowledge and learning
biases should be acknowledged in any knowledge discovery work.

Perhaps a more immediately profitable use for data mining techniques on architectural CAD data
is the re-presentation of designs in a different form according to an underlying ontology. We
considered here the Activity/Space Ontology but others could be applied to those engineering
domains that also design with CAD tools. Such a re-presentation then enables knowledge discovery
by the users of the data. We believe that more work is needed on re-presenting and visualizing design
knowledge in forms that are useful to designers.
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