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Abstract. One of the unresolved issues in case-based design is how to
perform design case adaptation when the constraints are not numerical.
In this paper we present a method of case adaptation that employs an
evolutionary algorithm. We present a process model for evolutionary
design case adaptation, as well as the knowledge it requires and its
implications. This model has been implemented for floor plan layout
using a case-base of Frank Lloyd Wright prairie houses and an
evaluation using feng shui constraints. The implementation
demonstrates the representation issues and shows how the model can
address two distinct knowledge sources.

1. Introduction

The design process model presented in this paper addresses design
synthesis and evaluation by combining the paradigms of case-based
reasoning (CBR, see for example (Kolodner, 1993)) and evolutionary or
genetic algorithms (GA’s, see for example (Mitchell, 1998)). The process
model, illustrated in Figure 1, emphasises solving problems using
inspiration from precedents; this is the main idea behind CBR. The
solutions to past design problems contained in the precedents that are
retrieved serve as starting points for a search for design solutions.
Multiple random combinations and modifications (together referred to as
adaptations) of the retrieved cases are then generated and evolved
incrementally, until a satisfactory solution to the new design problem is
found; this is the main idea behind GA’s.

In this paper we present the process model in general terms and as
applied to floor plan layout. The model can be used to perform a variety
of design tasks on a broad set of application domains, so far it has been
implemented for the floor plan layout and structural design domains
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(Gómez de Silva Garza and Maher, 1999a), (Gómez de Silva Garza and
Maher, 1999b), and (Gómez de Silva Garza, 2000).
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Figure 1. Design process model using CBR and evolution.

2. Overview of the Process Model

Given the specification of the requirements of a new design problem, the
first task in the process model is to determine which design cases contain
information that might be useful in solving the new problem. This is done
by comparing the description of the new problem with the descriptions of
the designs stored in the case base. Those cases for which some similarity
is found with the new problem are taken to be first approximations
towards a solution to the new problem, and are an initial population of
potential designs. The cases in this population are then adapted to
become satisfactory solutions to the new problem.

Case adaptation is performed by an evolutionary method.
Combination and modification are the two types of adaptation that are
performed by the evolutionary method through the genetic operators of
crossover and mutation, respectively. Crossover of two designs produces
two offspring designs, each of which combines features from each of two
parent designs. Mutation produces one offspring design which is an
altered version of one parent design. Both crossover and mutation insert
new designs into the population.

The two types of adaptation generate new potential designs that are
evaluated and ranked according to a fitness function. In the process of
evaluating them, a potential design may be found that satisfies the
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requirements of the new design problem and doesn’t violate any design
constraints. If a solution is not found, the evolutionary adaptation
process continues, using the best potential designs as the population to
the next cycle of adaptations. The best potential designs are selected
from the augmented population containing both previously and newly
generated potential designs.

3. Design Case Representation

Case representation issues for this design process model include the
representation of a design case in terms of content, as well as the
consideration of the genotype vs phenotype representation used in a
genetic algorithm.

3.1 CONTENT OF A CASE

The content of a design case can take many forms and can include
different categories of design information taken from the precedent it
represents, for example, a design case can include:

• the problem specification of the design episode,
• the problem-solving steps that were taken to reach the final

design,
• annotations, explanations or justifications of aspects of the final

solution, and/or
• annotations, explanations or justifications of the problem-solving

steps that were taken.
In addition, if CBR is being used for design, the representation of the

final design can include more than the design specifications, such as
contextual or support information. For instance, the representation of
the solution might also include a description of the environment in which
the designed artefact is meant to operate in or other related information
that might be of use or might influence design decisions.

The content of a design case determines what knowledge can be
transferred from the previous designs to the new design situation. In our
example of floor plan layout, we have developed a case base of residential
designs that capture a particular style, specifically, Frank Lloyd Wright
prairie houses. The content of the case is also influenced by the
constraints that are used to evaluate the alternative designs. We have
developed a fitness function based on feng shui constraints to
demonstrate the use of the model for evaluating designs with non-
numerical constraints. The selection of two distinct sources for the case
base and the evaluation function also demonstrates that the model can
combine different knowledge sources in one design model.
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A case is represented at three levels, as shown in Figure 2. In order to
represent the layout with enough information to determine whether the
feng shui constraints are satisfied, each case includes a description of the
landscape surrounding the residence, the layout of the rooms in a floor
plan, and the layout of the furniture in the rooms. We identify the
components in each level of the case representation and locate them in a
simple 3x3 grid. A more detailed analysis of the domain and
implementation are included in (Gómez de Silva Garza, 2000).
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Figure 2. Example of three-level representation of a case

Not all the knowledge that is stored in a case is relevant to the case
adaptation process. Only the description of the solution itself, without
any contextual information, is used during case adaptation, while the
supporting information is used during case retrieval. For example, when
adapting floor plan layouts, we may not need the information about the
landscape or the arrangement of the furniture within its rooms. The
landscape- and room-level information in the case can play a role in
matching (during retrieval), but it becomes contextual information when
it comes to adapting the floor plan layout of the house.

Implicit in the process model, therefore, is that some preparation of
the cases retrieved from memory is done before they can become the
initial population of the evolutionary case adaptation method. Figure 3
shows this expanded view of the case retrieval task from the process
model. The preparation phase involves stripping away irrelevant
information, such as information about the context that is fixed in the
new design description and therefore should not be adapted, or re-
representing some of the information stored in the case for more
efficient use in adaptation. Since our process model is general and makes
no commitments about the content or representation of cases, this
preparation phase is considered separately for each application of the
model.
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Figure 3. An expanded view of case retrieval

In the floor plan layout example, the preparation phase takes the case
as shown in Figure 2 and returns a representation of the information in
the house-level. This is the part of the case that becomes the input to
case adaptation. The aspects of the design that are adapted are the
components of the layout and their connections. A summary of the
information in a case that is adapted is shown below.
House level

Components:
Bed-1 Type: bedroom Location: 1 Shape: square
Bed-2 Type: bedroom Location: 4 Shape rectangle
Hall-1 Type: hallway Location: (5 8)
…

Connectors:
Bed-2-Hall-1 Type: door Location: 5 Side-a: Bed-2

Side-b Hall-1 Direction EW
Bed-1-Window-1 Type: window Location: 1 Side-a:

Bed-2 Side-b: Hall-1 Direction EW

3.2 PHENOTYPE-GENOTYPE DICHOTOMY IN GA’S AND ITS RELATION
TO CASES

In GA’s a distinction is made between the phenotype and the genotype of
an individual in an evolving population. The genotype is the genetic
material that describes the individual using a set of primitive genetic
instructions/units. The phenotype is the manifestation of the physical,
behavioural, and functional characteristics displayed by the individual
after the genetic instructions in the genotype are interpreted. The
synthesis subtasks of a GA, crossover and mutation, operate on
genotypes: it is genetic material that gets transformed by these
operations. The analytical subtasks of a GA, evaluation and selection,
operate on phenotypes. In some applications of a GA, the distinction
between genotype and phenotype is not maintained, however we have
kept the distinction in our applications of our design process model. The
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benefit to the duality is realised when the operations on the genotype
representation manipulate information that is independent of the
knowledge needed for evaluation, allowing the generation of new designs
to be independent of the knowledge of a particular design’s performance.

In the floor plan layout application, the case representation contains
information about both elements and connectors. The two types of
information are interrelated, because the representation of each
connector includes information about the elements it connects. Because
of the multiple mutual dependencies between the two types of
information, crossover (which operates on independent genes) cannot be
performed easily on the symbolic case (or phenotype) representation.
We have developed a genotype representation of the layout design based
on the adjacency matrix.

If different representations are chosen for phenotypes and genotypes
in a given implementation, the initial population of designs retrieved
from case memory are transformed into the genotypes used during
crossover and mutation. The new population of genotypes produced after
crossover and mutation are then transformed into a population of
phenotypes before evaluation and selection can be performed. These
transformations are shown in Figure 4.
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Figure 4. An expanded view of evolutionary case adaptation
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4. Evolutionary Design Case Adaptation

Generating a new design dnew using evolutionary design case adaptation
can be characterised by:

dnew = ∇design(R,M,K), where
• ∇design is a transformation process
• R is a set of problem requirements {r1, r2, …, rρ} that together

define a new design problem
• M is a case memory consisting of a set of cases {c1, c2, …, cµ}
• • K is a set of domain constraints {k1, k2, …, kκ }.
The three major components of the process model are: a new design

problem, a case memory of precedent designs, and the domain constraints
that guide the evolution of new designs. These three components allow
the separation of the precedent designs (using knowledge of the past)
from the current domain constraints (using current and possibly changing
design knowledge). The transformation ∇design consists of two parts, the
case retrieval part ∇retrieval and the case adaptation part ∇adaptation.

4.1 CASE RETRIEVAL

The role of case retrieval is to select a subset of cases from memory that
is relevant to a new design problem. The selected cases become an initial
population Pinitial of individual designs that can then be adapted using the
evolutionary method. That is:

P initial = ∇retrieval(R,M).
As we have seen previously, ∇retrieval consists of two steps, a memory

access and retrieval step ∇mem-retrieval followed by a case preparation step
∇preparation. The memory retrieval step can be characterised as follows:

C = {c1, c2, …, cγ} = ∇mem-retrieval(R,M), where
• C⊆M (therefore γ≤µ and ∀ci∈C, ci∈M), and
• ∀ci∈M, c i∈C↔∃rj∈Rƒmatch(ci,r j)=true.
That is, C is a subset of M containing γ of the cases in M, and a case ci

is retrieved from the case memory to become an element of C if and only
if there is some problem requirement rj in R that matches the case ci. The
specifics of the matching function ƒmatch will vary depending on the
characteristics of the domain and of the representation chosen for a
given domain. Different application domains and different
representations for cases and problem requirements may impose the need
for different types of operations to be performed in order to compare the
features of a given case with a given problem requirement to determine
whether they match or not.

The set of retrieved cases C now has to be transformed into an initial
population of individual designs that can be manipulated by an
evolutionary case adaptation algorithm. This transformation, the case
preparation step, can be characterised as:



400 A. GÓMEZ DE SILVA GARZA AND M.L. MAHER

P initial = {d1, d2, …, dγ} = ∇preparation(C), where
• ∀ii=1, 2, …, γ, we have that ci∈C and di = ƒprepare(ci).
That is, each individual design di in the initial population is obtained

by applying the preparation function ƒprepare to the corresponding case ci

from C. The specifics of ƒprepare will vary depending on the characteristics
of the domain and of the representations chosen, but in general it may
consist of stripping away irrelevant information (not required for
adaptation) from the case description and/or re-representing the
information in the case in some way.

In our layout design example, we have represented 12 cases that are
Prairie House designs created by Frank Lloyd Wright, obtained from
(Hildebrand, 1991). These 12 cases comprise M in the above
characterisation. A design problem is given by specifying how many
bedrooms, bathrooms, etc. are required in a solution. These requirements
are R in the above characterisation. Matching during retrieval (i.e., the
function ƒmatch) involves determining which cases have (as a minimum)
the required number of bedrooms and/or the required number of
bathrooms, etc.

We made some assumptions when implementing the process model.
First, we assume that there are many cases in the case base and that they
provide a reasonable distribution of design features. Second, we assume
that, given the specified requirements of a new design problem, more
than one case will be retrieved from memory. Third, a case may provide
useful information (and therefore will be retrieved) if it matches any part
of the new problem requirements. Thus, partial (and in the case of
numeric values, approximate) matching is performed, and even if only
one of the requirements of a design problem matches one of the features
of a given case, the case will be retrieved.

The final assumption is that the cases retrieved from memory will all
have the same potential for contributing information towards the final
solution. Thus, no ranking or weighting procedure is performed on the
retrieved cases, and all of them (rather than only one or a subset of
them) are used to create the initial population of the evolutionary case
adaptation method. The constraints in the fitness function may bias the
usefulness of the cases, but the cases themselves are not modified to
respond to this bias.

The assumptions discussed above are valid for the following reasons.
In design, it is unlikely that any previously designed solution will be
directly applicable to a new problem—otherwise the task being performed
would not be design, it would be copying. Thus, no case in memory is
likely to match all of the problem requirements, unless these are
extremely vague. All the retrieved cases will probably only partially
match the requirements. This is why the cases that are retrieved have to
be adapted. The following section describes the evolutionary approach to
case adaptation.
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4.2 CASE ADAPTATION

The role of case adaptation in our framework is to adapt an initial
population of cases Pinitial to find a new design dnew that is a solution to
the new design problem whose requirements are R. This can be
characterised as:

dnew = ∇adaptation(P initial,R,K).
The adaptation transformation ∇adaptation is performed using an

evolutionary method which evolves new (populations of) designs over
time out of previously known ones, evaluating them until one of them
satisfies the requirements of the new problem R and any design
constraints imposed by the domain of application K. The criteria used to
evaluate potential designs can vary from problem to problem (R), or can
be fixed across problems and vary only from application domain to
application domain (K).

The evolutionary method for case adaptation provides a mechanism
for case combination and case modification. Each of the retrieved cases
partially matches some of the requirements of the new design problem.
Because of this, there may be some combination of the features of
several of the retrieved cases that is a satisfactory solution to the new
problem. Thus, case combination is a useful way of performing case
adaptation.

If there is even one problem requirement that does not match any of
the cases in memory, however, even an exhaustive search of all the
possible combinations of the features of the retrieved cases will not find
one that is acceptable. Even if all known cases are used to generate new
potential solutions by combining their features (instead of using only the
partially matching cases that were retrieved), they will in general not
cover the entire set of possible combinations of features. Because of this,
more than just case combination has to be done during case adaptation.
Case modification is a way to overcome these limitations and achieve
more flexible case adaptation. These two types of case adaptation, case
combination and case modification, map onto the concepts of crossover
and mutation from evolutionary algorithms, respectively.

The transformation that takes place at each evolutionary cycle, ∇GA,
consists of six stages, ∇p-to-g , ∇combination, ∇modification, ∇g-to-p , ∇evaluation, and
∇selection. We discuss these steps in more detail below.

4.2.1 Phenotype-to-Genotype Transformation
The transformation ∇p-to-g  converts an initial population of design cases
(or phenotypes) Pinitial into a population of genotypes Ginitial. This can be
characterised as:

Ginitial = {g1, g2, …, gγ} = ∇p-to-g(P initial), where
• ∀ii=1, 2, …, γ, we have that pi∈P initial and gi = ƒmap-p-to-g(p i).
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The mapping function ƒmap-p-to-g depends on the representations of
phenotypes and genotypes chosen for a given application domain and the
relation between them. In our layout design example, ƒmap-p-to-g involves
finding the adjacency matrix that is equivalent to a house-level design
case.

4.2.2 Combination of Genotypes
At evolutionary cycle t+1, the crossover transformation generates a new
population of genotypes of new potential designs Gx

t+1 from that cycle’s
initial population of genotypes of designs Gt as follows:

Gx
t+1 = {gx1 , gx2 , …, gxχ} = ∇combination(G

t), where
• ∀ii=1, 2, …, χ, we have that gi∈Gt and gxi = ƒx(gi).
Genotype combination is achieved through genetic crossover

operators. If we assume that crossover combines information from only
two genotypes gi

t and gj
t at a time, then the crossover function ƒx also

produces two of the new genotypes gxi
t+1 and gxj

t+1 each time it is applied.
At evolutionary cycle t+1, this function is defined by:

gxi
t+1, gxj

t+1 = ƒx(gi
t, gj

t), where
• gi

t∈Gt and gj
t∈Gt, with g i

t≠gj
t ∀ i,j,

• gxi
t+1∈Gx

t+1, and gxj
t+1∈Gx

t+1, and therefore
• χ is even (unless gxi

t+1 or gxj
t+1 can be degenerate genotypes which

are discarded before ∇combination terminates).
That is, each application of ƒx takes two distinct parent genotypes

and produces two offspring genotypes to put into Gx. The choice of
which two parent genotypes to cross, and where to cross them, is done
randomly as part of ∇combination before each use of ƒx. The number of new
genotypes produced through crossover χ can be a constant across the
entire process model, or it can be chosen dynamically for each
evolutionary cycle.

Case combination of floor plan layouts is illustrated in Figures 5, 6,
and 7. Each selected case is illustrated by the graphical representation of
the phenotype and the adjacency matrix that is the genotype. Crossover
is implemented as an exchange of submatrices. In the example,
submatrices of size 3x3 are exchanged, each originally located in matrix
positions (0,0) and (2,2) of the parent genotypes. The resulting offspring
genotypes are shown in Figure 7.

The type of adaptation performed by genotype combination is a
structural adaptation (see Kolodner, 1993). From the example shown
above it can be seen that the content of the information held in the two
offspring is the same as that in the parents, though in different
combinations. But the structure of the offspring is different from the
structure of the parents: the types of room in each of the offpsring are
different from the types of rooms in their parents, and they are
connected in different ways
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4.2.3 Modification of Genotypes
At evolutionary cycle t+1, the modification transformation generates
genotypes of new potential designs Gm

t+1 from that cycle’s initial
population of genotypes of designs Gt as follows. It could also be from
Gt∪Gx

t+1, if we commit to performing combination before mutation,
though we will assume that this is not necessary here:

Gm
t+1 = {gm1, gm2, …, gmη} = ∇modification(G

t), where
• ∀ii=1, 2, …, η, we have that gi∈Gt and gmi = ƒm(gi).
Genotype modification complements genotype combination by

making changes to the content of a single genotype. Genotype
modification is achieved through genetic mutation operators. At
evolutionary cycle t+1, the mutation function ƒm applied to genotype gi

t

to produce a new genotype gmi
t+1 is defined by:

gmi
t+1 = ƒm (gi

t), where
• gi

t∈Gt, and gmi
t+1∈Gm

t+1.
That is, each application of ƒm takes one parent genotype and

produces one new offspring genotype to put into Gm. The choice of
which parent genotype to mutate, and how to mutate it, is done
randomly as part of ∇modification before each use of ƒm. The number of new
genotypes produced through mutation η can be a constant across the
entire process model or can be chosen dynamically for each evolutionary
cycle.

If the new value for the mutated design parameter is generated
completely at random, spurious phenotypes that have no semantics (i.e.,
their meaning cannot be interpreted or makes no sense in the real world)
may be produced. For a particular domain, knowledge of which values are
meaningful for which attributes can be used to ensure that mutation
produces only valid values, in order to reduce search time. In our
application this knowledge is stored in an associative memory.

The type of adaptation performed by case modification is also known
as parametric adaptation (Kolodner, 1993). The appearance (i.e., the
structure) of the offspring is the same as that of the parent. But the
content of the offspring is different from the content of the parent: the
two phenotypes describe different objects.

4.2.4 Genotype-to-Phenotype Transformation
At a given evolutionary cycle t+1, the transformation ∇g-to-p  converts the
populations of new genotypes that have been generated through
crossover and mutation (Gx

t+1 and Gm
t+1, respectively) into a population

of new phenotypes Pn
t+1. This can be characterised as:

Pn
t+1 = {pn1 , pn2 , …, pnπ} = ∇g-to-p(Gn

t+1), where
• ∀ii=1, 2, …, π, we have that gni∈Gn

t+1 and pni = ƒmap-g-to-p(gni),
• Gn

t+1 = Gx
t+1∪Gm

t+1, and
• π = χ + η.
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The mapping function ƒmap-g-to-p depends on the representations of
genotypes and phenotypes chosen for a given application domain and the
relation between them. In our layout design example, ƒmap-g-to-p involves
interpreting the information about the elements and connectors in an
adjacency matrix to generate the object-based representation of the floor
plan.

4.2.5 Evaluation of Phenotypes
At a given evolutionary cycle t+1, the transformation ∇evaluation evaluates
the populations of new phenotypes Pn

t+1 to create an evaluated
population of new phenotypes Pe

t+1. This can be characterised as:
Pe

t+1 = {pe1, p e2, …, peπ} = ∇evaluation(Pn
t+1,R,K), where

• ∀ii=1, 2, …, π, we have that pni∈Pn
t+1 and pei = ƒevaluate(pni,R,K).

The evaluation function ƒevaluate implements what is known in GA
terminology as the fitness function, which assigns a fitness value to each
proposed solution. The fitness value fi for an individual phenotype pi in a
population based on the fitness criteria imposed by both the domain K
and the current problem R as follows:

fi = ƒevaluate(p i,R,K)
The operations that the evaluation function ƒevaluate has to perform

will be discussed in more detail below. First we introduce the concept of
constraints and how they can be used to represent fitness criteria for
evaluating designs.

Evaluation has to determine whether a proposed solution looks and/or
behaves adequately. This means that it has to analyse the phenotype of a
proposed solution. This evaluative analysis can be seen as a constraint-
satisfaction problem, where the space of satisfactory solutions is defined
and limited by a series of constraints describing the conditions under
which a proposed design is acceptable. Some of these conditions are
dynamic: each problem will impose different constraints on the subset of
possible solutions that can be considered satisfactory. Some of the
conditions are static: the domain and the representation chosen will
impose design principles and other absolute conditions on the
acceptability of potential designs, irrespective of the requirements of a
given problem.

The task of evaluation is then to analyse each proposed design
according to each condition that defines the space of satisfactory
solutions for the current problem, whether it is imposed by the problem
requirements or by the domain. In our layout design example, each
domain-imposed constraint to be verified is represented procedurally, as a
function that takes a proposed design as input, analyses it according to
the conditions corresponding to the constraint, and returns a yes/no
answer indicating whether the proposed design violates the constraint or
not. That is, for each domain-imposed evaluation criterion ei, a function
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ƒei is required that accepts a phenotype pj as an argument and returns an
indication of whether the corresponding criterion is violated by pj or not.

Problem-imposed constraints, equivalent to problem requirements,
may be represented in different ways, depending on the type of design
problem one is dealing with. A function ƒp-match is required which returns a
yes/no value depending on whether there is a match between the features
of a given phenotype and a given problem requirement. It may be
possible to use the function ƒmatch, which is used in case retrieval and
determines whether there is any match between the features of a given
case and a given problem requirement, for this purpose, if phenotypes
and cases are represented in the same way.

The fitness value is a quantitative measure of the quality of a potential
solution. The total fitness of a proposed design will be the sum of its
domain fitness and its problem fitness. In our layout design example, the
domain expertise for the evaluation of potential designs is easier
expressed in the negative rather than the positive way. The design
evaluation knowledge is criteria for recognising and rejecting bad designs,
rather than for recognising and accepting good designs. In order to
calculate a fitness value, and assuming each constraint has the same
weight or importance, each yes answer will be assigned a value of 1 and
each no answer a value of 0. After evaluating each proposed solution
according to all domain constraints, the total domain fitness value
obtained by adding the resulting partial values will indicate the total
number of domain constraints that were violated by the proposed design.

In our example, domain constraints embody feng shui principles.
These principles are constant across floor plan layout design problems.
The feng shui knowledge was obtained from (Rossbach, 1987). An
example of a constraint at the house level is given by the following quote
from (Rossbach, 1987):

Traditionally, the Chinese avoid three or more doors or
windows in a row...this...funnels ch’i [positive energy] too
quickly...[CURE:]...to stop ch’i from flowing too quickly,
hang a wind chime or crystal ball... (page 89)

The pseudocode that represents this constraint procedurally is the
following (given a phenotype P). Other feng shui domain constraints
have been implemented in a similar fashion:

Get the list C of all connectors in P;
Get the list Q of all wind chimes/crystal balls (potential
cures) in P;
For each connector c in C or until a bad omen has been found:
 Get the location l of c;
 Get the direction d of c;
 Set the list of connectors LU lined up with c to the empty
 list;
 Get the list Reduced of all elements in C except c;
 For each connector r in Reduced:
 If the direction of r is d And
 the location of r lines up with l along direction d,
 Then add r to LU;
 End-if;
 End-for;
 If there are two or more connectors in LU And
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 no potential cure in Q lines up with r,
 Then constraint is violated;
 End-if;
End-for;

In contrast to the static domain constraints, the dynamic constraints
embodied in the specified requirements of a given problem are expressed
as positive features, i.e., they will describe conditions that an acceptable
answer must satisfy or characteristics that it must have. As mentioned in
Section 4.1, in our example these problem requirements specify how
many of each type of room are needed in the solution.

In order to use the requirements to calculate a fitness value, and
assuming each requirement has the same weight/importance, each
requirement that is satisfied by a proposed solution will be assigned a
value of 0, and each requirement that is not satisfied will be given a value
of 1. After evaluating each proposed design according to all the problem
requirements, the total problem fitness value obtained by adding the
resulting partial values will indicate the number of problem requirements
that were not satisfied by the proposed design.

The total fitness of a proposed solution will be the sum of its domain
fitness and its problem fitness, assuming the constraints imposed by the
domain and the problem are given equal importance. The total fitness fi

of a given potential solution ii, given κ constraints (k1 through kκ) which
are used to analyse its domain fitness and ρ problem requirements (r1

through rρ) which are used to analyse its problem fitness, is calculated
with the following equation in our framework:

 κ ρ

fi = Σ ki + Σ rj

i=1 j=1

where ki = 0 if constraint ki is not violated by the
solution or
ki = 1 if constraint ki is violated by the solution, and
rj = 0 if requirement rj is met by the solution or
rj = 1 if requirement rj is not met by the solution.

Determining if a constraint ki is violated or not by a given phenotype
is done using the function ƒki, as described above, where constraint ki

corresponds to evaluation criterion ei. Determining if a problem
requirement ri is met by a given phenotype or not is done using the
function ƒp-match, as described above.

Convergence of the GA to an acceptable solution (i.e., an acceptable
adaptation of the originally retrieved cases) occurs if a proposed solution
has a total fitness of 0, meaning that none of the domain constraints has
been violated and all of the problem requirements have been satisfied.
The goal of the GA is thus to minimise the fitness value of the designs in
its population. In order to achieve this goal, the average fitness of the
designs in the GA’s population should monotonically decrease at each GA
cycle. The subtask for determining which members of the population
participate in the next round of alternatives is the selection subtask.
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4.2.6 Selection of Phenotypes
The transformation ∇selection consists of two parts, ƒsort and ƒselect.  At a
given evolutionary cycle t+1, the sorting function ƒsort takes the
phenotypes in the initial population of the cycle Pt (it is presumed they
have previously been evaluated and their fitness value is known), plus the
phenotypes newly generated and evaluated in the cycle Pe

t+1, and sorts
them according to their fitness value, producing a sorted population of
phenotypes Ps

t+1. That is:
P s

t+1 = ƒsort(P t∪Pe
t+1).

The selection function ƒselect then chooses the best of the sorted
phenotypes, to produce an initial population for the next evolutionary
cycle Pt+1. That is:

P t+1 = ƒselect(Ps
t+1).

Selection produces an initial population for the next evolutionary
cycle. During the current GA cycle, an initial population of γ designs was
used as a basis for creating π (where π=χ+η) new designs, χ of them
through crossover and η of them through mutation. Let us assume that
we want to keep the size of the GA population constant across
evolutionary cycles. Because of this, of the sorted population P s

t+1

consisting of γ+π designs (γ of them coming from P t, and π of them
newly generated in the current evolutionary cycle), selection has to
choose the best γ. These γ designs become the initial population for the
next GA cycle. ƒsort is implemented as a quicksort function, and ƒselect

simply takes the first γ individuals of the population sorted by fitness
resulting from ƒsort.

The selection module has the role of deciding which combinations and
modifications of previously known designs and/or which previously
known designs to keep for further adaptation and which ones to discard.
This choice is made according to the relative quality of the proposed
designs as determined by the evaluation module. This quality in turn
depends on the fortuitous results of the random decisions made while
performing crossover and mutation to produce new adaptations of past
designs. Once selection has been performed, a new evolutionary cycle can
start to generate new potential designs again, starting with an improved
initial population resulting from the selection process. After several
evolutionary cycles, this process ensures that the average quality of the
designs in the population monotonically improves.

5. Experimental Results

We implemented the process model using 12 Frank Lloyd Wright prairie
house designs taken from (Hildebrand, 1991) as the case memory. The
constraints used for evaluation were taken from text descriptions of feng
shui principles presented in (Rossbach, 1987). The fitness function
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includes 11 constraints at the landscape level and 16 constraints at the
house level. The population size was kept constant during the
evolutionary cycles. The selection of which members of the population
to include in the next generation was made from the combination of
parents and offspring, so a parent design could participate in more than
one generation. Of the new individuals generated in each cycle, 80% were
generated by crossover and 20% by mutation.

The design process for generating floor plans can be considered in
terms of the efficiency of using design cases as the starting point for
generating new designs and in terms of the quality of the design solutions
as examples of prairie house style. To analyse the efficiency of the
approach, the program was run 20 times using the case memory of 12
prairie house layouts and 20 times using 12 randomly generated floor
plans. We consider convergence and number of cycles to convergence as
the basis for comparing efficiency. In the 20 runs, 5 of the runs
converged using both the randomly generated case memory and the
prairie house memory. The frequency of convergence was not affected
and therefore our results show that using an initial population of actual
designs does not improve the probablity of convergence. The number of
cycles to convergence was affected by the use of a case memory of actual
designs, the convergence rate was on average, 50% faster than when using
the randomly generated floor plans. The details are shown in Table 1.

To analyse the quality of the design solutions, we look at one example
in detail. The new design specification is stated as:

((bedroom 3) (bathroom 2) (fireplace 1) (music-room 1))
That is, we want a floor plan with 3 bedrooms, 2 bathrooms, 1

fireplace and a music room.

TABLE 1. GA cycles required before convergence:

Trial #: Random: Trial #: FLW cases:

1 114 25 54

9 333 31 34

11 357 36 32

14 274 37 406

17 160 39 90

Avg.: 241.6 Avg.: 123.2

The solution generated for this specification is shown in Figure 8. In
this run, all 12 cases were retrieved, the process converged after 61
cycles, and 28 crossover operations and 3 mutations occurred. The
solution combines features from 3 of the 12 designs that were originally
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retrieved. Features from the other cases were present in the final
generation, but were not part of the final solution.

Bathroom 47

Bedroom 45

Walk-in
Closet 42

Bedroom
43

Hallway 48

Bedroom
50

Music
Room 49

Living
Room 37

Steps
 51

Fireplace
52

Kitchen
 39

Pantry
38

Hallway 41 Bathroom
46

Hallway 40

Bedroom
44

Dining
Room 36

Figure 8. Floor plan design generated by evolutionary case adaptation.

We can observe some of the features of the parent designs in the new
design, for example:

• The floor plan has many hallways, a feature inherited from the
Avery Coonley House.

• The protuberance from the dining room is a feature of the Robie
House.

• The skewed room is a feature inherited from Willits House.
• In general, the prairie house style can be recognised in the large

dining and living rooms that merge into each other with the
fireplace.

6. Summary

We have presented a process model for the evolutionary adaptation of
design cases. This process model combines aspects of CBR and GA’s into
one framework for adaptive design. The four subtasks of the evolutionary
algorithm, combination, modification, evaluation, and selection, together
guide the search for a solution to a new problem, while at the same time
the search has a degree of flexibility due to the random nature of some of
the decisions made in the subtasks. The search is given additional initial
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bias by the use of cases. Cases are retrieved from a case memory based on
their relevance to the requirements of the new problem and are used to
initialise the population of potential solutions of the evolutionary
algorithm. In the process model, knowledge is only required in the form
of design cases which provide a framework for the construction of new
potential solutions, and in the form of domain constraints which help
evaluate potential solutions generated by the evolutionary algorithm.

This process model has the following characteristics:
• The design precedents as cases can define a type or style of design.

In our example the cases described the prairie house style of Frank
Lloyd Wright.

• The GA operators provide a knowledge-lean mechanism for
adaptation. In our implementation, the crossover and mutation
operators were independent of floor plan layout.

• The evaluation of adapted designs need not be numerical
constraints. In our example, the evaluation constraints
representing the practice of feng shui considered direction and
number of components and connectors in a layout.

• The knowledge needed during adaptation can be independent of the
knowledge in the cases. In our example, the knowledge in the cases
of prairie houses was expressed independently of the knowledge in
the feng shui constraints.
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